Phenotypic and genotypic characteristics of antibiotic resistance of commensal Escherichia coli isolates from healthy pigs

Justyna Mazurek 1 , Ewa Bok 1 , Paweł Pusz 1 , Michał Stosik 1 , and Katarzyna Baldy-Chudzik 1
  • 1 Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, 65-561 Zielona Góra, Poland

Abstract

The objective of the study was to examine the characteristics of the resistance profiles of Escherichia coli isolated from healthy pigs from three farms in Western Poland. The sensitivity to 13 antimicrobial agents was tested by a disk diffusion method, and the presence of 13 resistance genes was determined by PCR. The majority of the isolates were multi-resistant. The most common multi-resistance patterns were streptomycin, trimethoprim, sulfisoxazole, ampicillin, tetracycline. Although some resistance genes, such as strA/strB, blaTEM, sul1, sul2, and tetA, were equally represented in isolates from each farm, differences in the distribution of tetB and tetC, hfrV, dhfrXII, and sul1 resistance genes were observed among the isolates from different farms. Approximately one-third (35.9%) of the isolates possessed a class 1 integron. The four major different variable regions of the class 1 integron contained streptomycin (aadA1, aadA2, and aadA5) and/or trimethoprim (dhfrI, dhfrV and dhfrXVII), and/or sulphonamides (sul1) resistance genes. The results of this study emphasise that uncontrolled use of antibiotics causes the development of resistance and provides the evidence of frequent occurrence of more than one gene encoding the resistance to the same antimicrobial agent in the multi-resistant strains.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Baldy-Chudzik K., Mackiewicz P., Stosik M.: Phylogenetic background, virulence gene profiles and genomic diversity in commensal Escherichia coli isolated from ten mammal species living in one zoo. Vet Microbiol 2008, 131, 173-184.

  • 2. Bibbal D.V., Dupouy M.F., Pre`re P., Toutain L., Bousquet-Mélou A.: Relatedness of Escherichia coli strains with different susceptibility phenotypes isolated from swine feces during ampicillin treatment. Appl Environ Microbiol 2009, 75, 2999-3006.

  • 3. Bryan A., Shapir N., Sadowsky M.J.: Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl Environ Microbiol 2004, 70, 2503-2507.

  • 4. Bywater R., Deluyker H., Deroover E., de Jong A., Marion H., McConville M., Rowan T., Shryock T., Shuster D., Thomas V., Valle M., Walters J.: A European survey of antimicrobial susceptibility among zoonotic and commensal bacteria isolated from food-producing animals. J Antimicrob Chemother 2004, 54, 744-754, doi:10.1093/jac/ dkh422.

  • 5. CLSI, Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. CLSI Document M100-S20, Clinical and Laboratory Standards Institute, Wayne, 2010.

  • 6. de Jong A., Thomas V., Simjee S., Godinho K., Schiessl B., Klein U., Butty P., Vallé M., Marion H., Shryock T.R.: Pan- European monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals. J Antimicrob Chemother 2012, 67, 638-651.

  • 7. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. EFSA J 2010, 10, 2598.

  • 8. Ewing W.H.: Edward's and Ewing's identification of Enterobacteriaceae. Elsevier Science Publishing Co. Inc., New York 1986, pp. 23-86.

  • 9. Ho P.L., Wong R.C., Chow K.H., Que T.L.: Distribution of integron-associated trimethoprim-sulfamethoxazole resistance determinants among Escherichia coli from humans and food- producing animals. Lett Appl Microbiol 2009, 49, 627-634.

  • 10. Ho P.L., Wong R.C., Lo S.W., Chow K.H., Wong S.S., Que T.L.: Genetic identity of aminoglycoside-resistance genes in Escherichia coli isolates from human and animal sources. J Med Microbiol 2010, 59, 702-707.

  • 11. Iyer A., Barbour E., Azhar E., El Salabi A.A., Hassan H.M.A., Qadri I., Chaudhary A., Abuzenadah A., Kumosani T., Damanhouri G., Alawi M., Na’was T., Abdel Nour A.M., Harakeh S.: Transposable elements in Escherichia coli antimicrobial resistance. Adv Biosci Biotechnol 2013, 4, 415-423.

  • 12. Kozak G.K., Boerlin P., Janecko N., Reid-Smith R.J., Jardine C.: Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl Environ Microbiol 2009, 75, 559-566.

  • 13. Lévesque C., Roy P.H.: PCR analysis of integrons, In: Diagnostic molecular microbiology. Edited by Persing D.H., Smith T.F., Tenover F.C., White T.J., American Society for Microbiology, Washington, D.C., 1993, pp. 590-594.

  • 14. Li X.Z., Mehrotra M., Ghimire S., Adewoye L.: β-lactam resistance and β-lactamases in bacteria of animal origin. Vet Microbiol 2007, 121, 197-214.

  • 15. Maynard C., Bekal S., Sanschagrin F., Levesque R.C., Brousseau R., Masson L., Larivie`re S., Harel J.: Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol 2004, 42, 5444-5452.

  • 16. Marchant M., Vinué L., Torres C., Moreno M.A.: Change of integrons over time in Escherichia coli isolates recovered from healthy pigs and chickens. Vet Microbiol 2013, 163, 124-132.

  • 17. Martins L.R., Pina S.M., Simões R.L., de Matos A.J., Rodrigues P., da Costa P.M.: Common phenotypic and genotypic antimicrobial resistance patterns found in a case study of multiresistant E. coli from cohabitant pets, humans, and household surfaces. J Environ Health 2013, 75, 74-81.

  • 18. Ng L.K., Martin I., Alfa M., Mulvey M.: Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Prob 2001, 15, 209-215.

  • 19. Sáenz Y., Briňas L., Domínguez E., Ruiz J., Zarazaga M., Vila J., Torres C.: Mechanisms of resistance in multiple-antibiotic- resistant Escherichia coli strains of human, animal, and food origins. Antimicrob Agent Chemother 2004, 48, 3996-4001.

  • 20. Sunde M., Sørum H.: Self-transmissible multidrug resistance plasmids in E. coli of the normal intestinal flora of healthy swine. Microb Drug Resist 2001, 7, 191-196.

  • 21. Szmolka A., Fortini D., Villa L., Carattoli A., Anjum M.F., Nagy B.: First report on IncN plasmid-mediated quinolone resistance gene qnrS1 in porcine Escherichia coli in Europe. Microb Drug Resist 2011, 17, 567-573.

  • 22. Wasyl D., Hasman H., Cavaco L.M., Aarestrup F.M.: Prevalence and characterization of cephalosporin resistance in nonpathogenic Escherichia coli from food-producing animals slaughtered in Poland. Microb Drug Resist 2012, 18, 79-82.

  • 23. Wasyl D., Hoszowski A., Zajac M., Szulowski K.: Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Front Microbiol 2013, 4, 221. doi: 10.3389/fmicb.2013.00221.

  • 24. Veldman K., Cavaco L.M., Mevius D., Battisti A., Franco A., Botteldoorn N., Bruneau M., Perrin-Guyomard A., Cerny T., De Frutos Escobar C., Guerra B., Schroeter A., Gutierrez M., Hopkins K., Myllyniemi A.L., Sunde M., Wasyl D., Aarestrup F.M.: International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J Antimicrob Chemother 2011 March 15, doi:10.1093/jac/dkr084.

OPEN ACCESS

Journal + Issues

Search