Concentration of trace elements vs redox status in blood, liver, and muscles of turkey hens fed diets with the addition of soybean or linseed oil

Open access

Abstract

The undertaken study aimed at analysing the effect of linseed oil used in diets for turkey hens on contents of pro- and antioxidants in their tissues. Additionally, correlations were analysed between the contents of these compounds in blood, liver, and muscles of the birds. The experiment was conducted on 240 one-week-old turkey hens reared until 16 weeks of age, randomly allocated into two feeding groups. Hens from the first group received soybean oil in their complete feed mixture, whereas linseed oil was the source of fat for turkey hens from the second group. The oil content of the diet was on the level appropriate for the period of feeding: Starter - 0.5%; Grower I - 1.0%, Grower II - 2.5%; Finisher I - 3%. The redox parameters were assayed in breast and thigh muscles, blood, and liver. Introduction of PUFA n-3 high linseed oil to a feed mixture contributed to the enhancement of lipid peroxidation processes, which was indicated by a significant increase in concentrations of H2O2 and malondialdehyde in muscles, and by an increase of superoxide dismutase activity and concentrations of vitamin C and minerals (Cu+2, Zn+2, Fe+2, Se+2). This points out the need of strengthening the antioxidative defence by the use of suitable antioxidants. The use of linseed oil as a feed material for turkey hens additionally contributed to changes in parameters determining the ferric reducing ability of plasma (FRAP). The increased FRAP values resulted from a significant increase in vitamin E level.

1. Bartosz G.: The second face of oxygen. 2004, PWN, Warszawa.

2. Benzie I.F.F., Strain J.J.: The ferric reducing ability of plasma (FRAP) as a measure of „antioxidant power” the FRAP assay. Anal Biochem 1996, 239, 70-76.

3. Bhatia A.L., Manda K., Patni S., Sharma A.L.: Prophylactic action of linseed (Linum usitatissimum) oil against cyclophosphamide-induced oxidative stress in mouse brain. J Med Food 2006, 9, 261-264.

4. Clairborne A.: Catalase Activity. In: Handbook of Methods for Oxygen Radical Research. Edited by Greenwald R.A., CRC Press, Boca Raton, USA 1985, pp. 283-284.

5. Czajka A.: Reactive oxygen species and mechanisms of body protection. Nowiny Lekarskie 2006, 75, 582-586.

6. Czech A., Ognik K., Grela E.R.: Efficacy of a mixture of synthetic antioxidant and protein-xanthophyll alfalfa concentrate in turkey hens feeding. Archiv für Geflügelkunde Eur Poult Sci 2012, 2, 105-112.

7. Czech A., Ognik K., Laszewska M.: Influence of linseed oil on content of the fatty acids in feed mixtures and muscles of turkey hens and blood profile lipids. Ann Univ Mariae Curie- Skłodowska Sec. EE Zootechnica 2012, 30, 9-17.

8. Dmoch M., Solan M.: The role of vitamin C in domestic birds. Wiad Zootech 2008, 2, 21-28.

9. Ergun S., Yontem M., Yerlikaya A., Ozata A., Uysal K., Kurt H.: Influence of dietary oils on liver and blood lipid peroxidation. Saudi Med J 2005, 26, 442-446.

10. Florou-Paneri P., Palatos G., Govaris A., Botsoglou D., Giannenas I., Ambrosiadis I.: Oregano herb versus oregano essential oil as feed supplements to increase the oxidative stability of turkey meat. Int Poult Sci 2005, 4, 866-871.

11. Gay C., Gębicki J.M.: Perchloric acid enhances sensitivity and reproducibility of the ferric-xylenol orange peroxide assay. Anal Biochem 2002, 304, 42-46.

12. Greenwald R.A.: CRC Handbook of methods for oxygen radical research. CRC Press Boca Raton, USA, 1985.

13. Gunzler W.A., Flohe L.: Glutathione Reductase. In: ECL CRC Handbook of Methods for Oxygen Radical Research. Edited by Greenwald R.A. CRC Press, Boca Raton, USA, 1985, pp. 285-290.

14. Karpiñska-Tymoszczyk M., Danowska-Oziewicz M., Borowski J.: The effect of oxidized fat added to feed mixture on selected quality attributes of turkey meat. Pakistan J Nutr 2004, 3, 213-221.

15. Kędzierska K., Bober J., Kwiatkowska E., Stachowska E., Olszewska M., Chlubek D., Ciechanowski K.: Oxidative stress and trace elements affect the activity of sodium transporting systems in a cellular membrane of a erythrocyte. Ann Acad Med Stetinensis 2008, 54, 105-114.

16. Kouba M., Benatmane F., Blochet J.E., Mourot J.: Effect of a linseed diet on lipid oxidation, fatty acid composition of muscle, perirenal fat, and raw and cooked rabbit meat. Meat Sci 2008, 80, 829-834.

17. Kouba M., Mourot J.: A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochemie 2011, 93, 13-17.

18. Ledwożyw A., Michalak J., Stępień A., Kędziołka A.: The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 1986, 155, 275-284.

19. NRC: Nutrient Requirements of Poultry. Ninth Revised Edition. Washington, D.C.: National Academy Press, 1994.

20. Omaye S.T., Turnbull J.D., Sauberlich H.E.: Selected methods for determination of ascorbic acid in animal cells, tissues, and fluids. Meth Enzymol 1979, 62, 3-11.

21. Ramadan M.F., Moersel J.T.: Screening of the antiradical action of vegetable oils. J Food Comp Anal 2006, 19, 838-842.

22. Simopoulos A.P.: Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins, leukotrienes and essential fatty acids 1999, 60, 421-429.

23. Skrzydlewska E., Łuczaj W.: The present-day look at lipid peroxidation. Post Biochem 2006, 52, 173-178.

24. StatSoft Inc., 2009. Statistica (data analysis software system) Version 9,0. www.statsoft.com.

25. Thompson L.U., Chen J.M., Li T., Strasser-Weippl K., Goss P.E.: Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin Cancer Res 2005, 11, 3828-3835.

26. Truchliński J., Ognik K., Sembratowicz I.: Influence of prolonged and interrupted stress from crowding and cooling of turkey-hens on anti-oxidation indices of the blood. Med Weter 2007, 63, 95-98.

27. Wąsowska I., Korniluk K., Kowalczyk J., Czauderna M.: Determination by reversed-phase high-performance liquid chromatography of δ-, γ- and α-tocopherol in milk and blood plasma. XXXI Symposium Chromatographic Methods of Investigating the Organic Compounds, Katowice, Poland, 2007.

28. Weill P., Schmitt B., Chesneau G., Daniel N., Safraou F., Legrand P.: Effects of introducing linseed in livestock diet on blood fatty acid composition of consumers of animal products. Ann Nutr Metab 2002, 46, 182-191.

29. Wood J.D., Richardson R.I., Nute G.R., Fisher A.V., Campo M.M., Kasapidou E., Sheard P.R., Enser M.: Effects of fatty acids on meat quality: A review. Meat Sci 2003, 66, 21-32.

30. Yanovych D., Czech A., Zasadna Z.: The effect of dietary fish oil on the lipid and fatty acid composition and oxidative stability of goose leg muscles. Ann Anim Sci 2013, 13, 155-165.

Bulletin of the Veterinary Institute in Pulawy

The Journal of National Veterinary Research Institute in Pulawy

Journal Information


IMPACT FACTOR 2017: 0.811
5-year IMPACT FACTOR: 0.973

CiteScore 2017: 0.68


SCImago Journal Rank (SJR) 2017: 0.287
Source Normalized Impact per Paper (SNIP) 2017: 0.484

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 19
PDF Downloads 13 13 7