Role of Visualization in a Knowledge Transfer Process

Open access

Abstract

Background: Efficient management of the knowledge requires implementation of new tools and refinement of the old ones - one of them is visualization. As visualization turns out to be an efficient tool for transfer of acquired knowledge, understanding of the influence of visualization techniques on the process of knowledge sharing is a necessity. Objectives: The main objective of the paper is to deepen the understanding of the relation of visualization to other knowledge sharing paths. The supplementary goal is a discussion of constraints on visualization styles in relation to readability and efficiency. Methods/Approach: Due to the ambiguous nature of the problem, case analysis was selected as a research method. Two research papers have been selected for that. The first one focused on agrotourism, introduces a general use theoretical tool suitable for various purposes, such as consumer sentiment analysis. The second one evaluates possibilities of revealing an implicit organizational structure of an organization by means of visual analysis using interaction graphs. Results: Visualization is an important part of data analysis and knowledge transfer process. Hybrid visualization styles enhance information density but may decrease clarity. Conclusions: In order to maximise the role of visualization in a knowledg tranfer process, the special care must be devoted to clarity, the optimal level of details and information density in order to avoid obfuscation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Austin P. L. (2017) “Work During Your Hours of Peak Productivity” available at: https://lifehacker.com/work-during-your-hours-of-peak-productivity-1822000501 (21 February 2019).

  • 2. Balter M. (2011) “Was the Spotted Horse an Imaginary Creature?” available at: https://www.sciencemag.org/news/2011/11/was-spotted-horse-imaginary-creature (18 March 2019).

  • 3. Brzeziński Ł. Wyrwicka M. (2015) “Wykorzystanie wizualizacji sieciowej do stymulacji wzrostu przedsiębiorstwa” (The use of network visualization to stimulate enterprise growth) in Kiełtyka L. Niedbał R. (Eds.) Wybrane zastosowania technologii informacyjnych wspomagających zarządzanie w organizacjach wyd. P.Cz. Częstochowa p. 93-106.

  • 4. Business Dictionary (2018) WebFinance Inc. available at: https://goo.gl/hWHDdw (20 March 2018).

  • 5. Erler C. Novak J. (2010) “Bisphenol A exposure: human risk and health policy” Journal of pediatric nursing Vol. 25 No. 5 pp. 400-407.

  • 6. Gosztyła K. Pulka M. Milewicz T. Lurzyńska M. Opiła J. Stochmal E. Hubalewska-Dydejczyk A. Galicka-Latała D. Krzysiek J. (2011) “The impact of polychlorinated biphenyls on placental and ovarian steroidogenesis” Przegląd Lekarski Vol. 68 No. 2 pp. 118-122.

  • 7. gnuplot (2019) computer program available at: http://www.gnuplot.info/ (25 February 2019).

  • 8. graphviz (2018) computer program available at: http://www.graphviz.org/ (22 March 2018).

  • 9. Kozlíková B. Krone M. Falk M. Lindow N. Baaden M. Baum D. Viola I. Parulek J. Hege H.-C. (2017) “Visualization of Biomolecular Structures: State of the Art Revisited” Computer Graphics Forum Vol. 36 No. 8 pp. 178-204.

  • 10. Jone C. Kristofco L. A. Steele W. B. Yates B. S. Breed C. S. Williams S. E. Brooks B. W. (2015) “Global Assessment of Bisphenol A in the Environment. Review and Analysis of Its Occurrence and Bioaccumulation” Dose-Response. Vol. 13 No. 3.

  • 11. NASA (2019a) Interactive chart “Kepler-7b. A giant planet composed mainly of gas” available at: https://exoplanets.nasa.gov/alien-worlds/strange-new-worlds/ (25 February 2019).

  • 12. NASA (2019b) “Out of the Dust A Planet is Born” available at: https://exoplanets.nasa.gov/resources/20/out-of-the-dust-a-planet-is-born/ (25 February 2019).

  • 13. Opiła J. (2005) “Analiza ewolucji nastrojów konsumenckich z wykorzystaniem metody powierzchni charakterystycznej” (An analysis of the evolution of consumer sentiment using the characteristic surface method) in Duda J. T. (Ed.) Systemy informatyczne i metody obliczeniowe w zarządzaniu AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne Kraków pp. 141-148.

  • 14. Opiła J. Opiła C. Cichowska J. (2008) “Prognozowanie ostrzegawcze w mikroprzedsiębiorczości z zastosowaniem rozszerzonej metody powierzchni charakterystycznej na przykładzie gospodarstwa agroturystycznego” (Emergency forecasting in microenterprise with the use of the extended surface method on the example of an agritourism farm) in „Zarządzanie przedsiębiorstwem – teoria i praktyka” XI międzynarodowa konferencja naukowa Kraków WZ AGH pp. 1-10.

  • 15. Opila J. (2016) “Prototyping of visualization designs of 3D vector fields using POVRay rendering engine” in Proceedings of 39th International Convention on Information and Communication Technology Electronics and Microelectronics (MIPRO) Opatija Croatia pp. 343-348.

  • 16. Opiła J. (2017a) “Wizualna analiza struktury organizacyjnej z wykorzystaniem narzędzi Open Source” (Visual analysis of the organizational structure with the use of Open Source tools) in Kiełtyka L. Sokołowski A. (Eds.) Techniki i technologie wspomagające funkcjonowanie przedsiębiorstw Wydawnictwo P.Cz. Częstochowa pp. 191-203.

  • 17. Opiła J. (2017b) “Wizualizacja jako narzędzie transferu wiedzy” (Visualization as a Knowledge Transfer Tool) in Garbacz J. (Ed.) Diagnozowanie stanu środowiska: metody badawcze prognozy: kompleksowe badania i ochrona środowiska naturalnego: zbiór rozpraw BTN Bydgoszcz 2017 pp. 169-182.

  • 18. Opiła J. Opiła G. (2018a) “Visualization of computable scalar 3D field using cubic interpolation or kernel density estimation function” in Proceedings of 41st International Convention on Information and Communication Technology Electronics and Microelectronics (MIPRO) Opatija Croatia pp. 189-194.

  • 19. Opiła J. (2018b) “Visualization in a Knowledge Transfer Process” in Proceedings of the ENTRENOVA-ENTerprise REsearch InNOVAtion Conference Split Croatia pp. 485-493.

  • 20. PAJEK (2018) computer program available at: http://mrvar.fdv.uni-lj.si/pajek/ (22 March 2018).

  • 21. Pirali O. Goubet M. Huet T. R. Georges R. Soulard P. Asselin P. Courbe J. Roy P. Vervloet M. (2013) “The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations” Physical Chemistry Chemical Physics Vol. 15 No. 25 pp. 10141-10150 available at: http://www.rsc.org/suppdata/cp/c3/c3cp44305a/c3cp44305a_2.pdf (22 February 2019).

  • 22. Robertson J. M. (1933) “The crystalline structure of naphthalene. A quantitative X-ray investigation” in Proceedings of the Royal Society of London Series A Containing Papers of Mathematical and Physical Character Vol. 142 No. 847 pp. 674-688.

  • 23. ScPovPlot3D (2019) “scPovPlot3D POVRay templates version 4” computer program https://github.com/JustJanush/Plot3Dv4 (25 February 2019).

  • 24. Stanovčić T. Peković S. Vukčević J. Perović D. (2018) “Going Entrepreneurial: Agrotourism and Rural Development in Northern Montenegro” Business Systems Research Journal Vol. 9 No. 1 pp. 107-117.

  • 25. Tamassia R. (2014) Handbook of Graph Drawing and Visualization Boca Raton FL CRC Press.

  • 26. The Redbooth Team (2018) “Everybody’s Working for the Weekend But When Do You Actually Get Work Done?” available at: https://redbooth.com/blog/your-most-productive-time (21 February 2019).

  • 27. Tufte E. (2001) The Visual Display of Quantitative Information Graphics Press 2nd edition.

  • 28. Weissgerber T. L. Milic N. M. Winham S. J. Garovic V. D. (2015) “Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm” PLOS Biology Vol. 13 No. 4.

  • 29. Wong K. (2018) “Ancient Cave Paintings Clinch the Case for Neandertal Symbolism” Scientific American available at: https://www.scientificamerican.com/article/ancient-cave-paintings-clinch-the-case-for-neandertal-symbolism1/ (18 March 2019).

  • 30. Zekić-Sušac M. Has A. (2015) “Data Mining as Support to Knowledge Management in Marketing” Business Systems Research Journal Vol. 6 No. 2 pp. 18-30.

Search
Journal information
Impact Factor


CiteScore 2018: 0.57

SCImago Journal Rank (SJR) 2018: 0.165
Source Normalized Impact per Paper (SNIP) 2018: 0.388

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 178 38
PDF Downloads 125 125 34