Structural and Piezoelectric Characterization of Pr3+ Modified (1-x)Pb(Zr1-yTiy)O3 – xPb(Mn1/3Sb2/3)O3 Ceramic

Alina Iulia Dumitru 1 , Georgeta Velciu 1 , Jana Pintea 1 , Delia Patroi 1 , Virgil Marinescu 1 , Florentina Clicinschi 1  and Ildiko Peter 2
  • 1 National Institute for Research & Development in Electrical Engineering, 030138, Bucharest, Romania
  • 2 University of Medicine, Pharmacy, Science and Technology „George Emil Palade”,, 540139, Targu Mures, Romania

Abstract

0.88Pb(Zr0.52Ti0.48)O3 – 0.12Pb(Mn1/3Sb2/3)O3 – 0,02 at%E piezoelectric ceramics, with E = Pr3+ were synthesized by using a conventional method, namely a solid state reaction technique. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) were employed for the structural and microstructural investigations. Piezoelectric methods were used for the dielectric and piezoelectric properties determination. The results of XRD show a perovskite structure and XRD patterns, indexing on a tetragonal cell structure, was carried out for the most common phases. The SEM micrographs of the sintered compositions reveal a homogenous structure with a sharp or rounded grain boundary. The modified PZT ceramic presents still superior piezoelectric properties. Based on the results obtained, one can conclude that the analysed piezoelectric ceramics are useful for device applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Haertling G H 1999 J. Am. Ceram. Soc. 82 797–818

  • [2] Fan F Q and Kim H E 2001 J. Am. Ceram. Soc. 84 636–8

  • [3] B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics, Academic, New York, 1971.

  • [4] Y.H. Xu, Ferroelectric Materials and their Applications, North-Holland, Los Angeles, 1991.

  • [5] L.E. Cross, in: N. Setter, E.L. Colla (Eds.), Ferroelectric Ceramics, Birkhäuser, Basel, 1993, pp. 1–85.

  • [6] D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, What can be expected from lead-free piezoelectric materials, Funct. Mater. Lett. 3 (2010) 5–13.

  • [7] G.H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (1999) 797–818.

  • [8] L. Jin, Z. He, D. Damjanovic, Nanodomains in Feþ 3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties, Appl. Phys. Lett. 95 (2009) 012905.

  • [9] R.Yimnirun, S. Ananta and P. Laoratanakul: Mat. Sci. Eng. B Vol. 112 (2004), p. 79

  • [10] T.Y. Zhang and C. F. Gao: Theor. Appl. Fract. Mec. Vol. 41 (2004), p. 339

  • [11] C.H. Wang, S.J. Chang and P.C. Chang: Mat. Sci. Eng. B Vol. 111 (2004), p. 124

  • [12] V. Porokhonskyy, L. Jin, D. Damjanovic, Separation of piezoelectric grain resonance and domain wall dispersion in Pb(Zr,Ti)O3 ceramics, Appl. Phys. Lett. 94 (2009) 252906.

  • [13] L. Jin, V. Porokhonskyy, D. Damjanovic, Domain wall contributions in Pb(Zr,Ti)O3 ceramics at morphotropic phase boundary: a study of dielectric dispersion, Appl. Phys. Lett. 96 (2010) 242902.

  • [14] X.B. Guo, H.Y. Chen and Z.Y. Meng: Key. Eng. Mat. Vol. 224-2 (2002), p. 105

  • [15] J.W. Long, H.Y. Chen and Z.Y. Meng: J. Inorg. Mater. Vol. 19 (2004), p. 101

  • [16] Yoon J, Kang H W, Kucheiko S I and Jung H J 1998 J. Am.Ceram. Soc. 81 2473–6

  • [17] Gao Y K, Uchino K and Viehland D 2002 J. Appl. Phys.92 2094–9

  • [18] Zhu Z G, Li B S, Li G R and Yin Q R 2005 Mater. Sci. Forum 475 1145–8

OPEN ACCESS

Journal + Issues

Search