Compaction Behaviour Modelling of Metal-Ceramic Powder Mixtures. A Review

Ileana Nicoleta Popescu 1  and Ruxandra Vidu 2
  • 1 Valahia University of Targoviste, Faculty of Materials Engineering and Mechanics, Str. Aleea Sinaia, No. 13, , Targoviste, Romania
  • 2 California Solar Energy Collaborative, University of California, Davis, 1, Shields Ave, , Davis, USA


Powder mixtures compaction behavior can be quantitatively expressed by densification equations that describe the relationship between densities - applied pressure during the compaction stages, using correction factors. The modelling of one phase (metal/ceramic) powders or two-phase metal-ceramic powder composites was studied by many researchers, using the most commonly compression equations (Balshin, Heckel, Cooper and Eaton, Kawakita and Lüdde) or relative new ones (Panelli - Ambrózio Filho, Castagnet-Falcão- Leal Neto, Ge Rong-de, Parilák and Dudrová, Gerdemann and Jablonski. Also, for a better understanding of the consolidation process by compressing powder blends and for better prediction of compaction behavior, it's necessary the modeling and simulation of the powder pressing process by computer numerical simulation. In this paper are presented the effect of ceramic particles additions in metallic matrix on the compressibility of composites made by P/M route, taking into account (a) the some of above mentioned powder compression equations and also (b) the compaction behavior modeling through finite element method (FEM) and discrete element modeling (DEM) or combined finite/ discrete element (FE/DE) method.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. W. Heckel, A normalized density-pressure Curve for Powder Compaction Trans. Metall. Soc. AIME, 224 (1962). 1074.

  • [2]. I. H. Moon ,K. H. Kim, , Relationship between compacting pressure, green density, and green strength of copper powder compacts Powder Met., 27( 2) (1984). 80-84.

  • [3] T. Çomoğlu, An Overview of Compaction Equations J. Fac. Pharm, Ankara, 36 (2) (2007)123-133.

  • [4] C. Cazotti, J.L.A. Oliveira, J.B. Fogagnolo, , Efeito da Adição de Partículas de Al2O3 sobre a Compressibilidade de Pós De Ligas De Alumínio, 17o Proceedings of CBECIMat, 15 -19 de November, Foz do Iguaçu, PR, Brasil (2006) 7452.

  • [5] R. Panelli, Thesis, Coordinator Prof. Dr. Ambrosio Fillo, Production of AISI M2 + 10%Vol. NbC by Mechanical Alloying, Sao Paulo, 1999.

  • [6] S. Mani, L.G. Tabil and S. Sokhansanj, Evaluation of compaction equations applied to four biomass species, Canadian Biosystems Engineering/Le génie des biosystèmes au Canada, 46(2004) 3.55-3.61.

  • [7]Luciano José De Oliveira, Thesis, Processing and Characterization of the Fe-Cu-Diamond System for Diamond Wire Pearls Use (in Portugues), Univ. de Estadual do Norte Fluminense, 2005.

  • [8] M. Castagnet, R. B. Falcão, R. M. Leal Neto, Compressibility Evaluation Of Mechanically Activated Niobium And Aluminum Powders Mixtures ,18º CBECiMat -, 24 a 28 de Novembro de 2008, Porto de Galinhas, PE, Brasil, 6785.

  • [9] S.J. Gerdemann and P.D. Jablonski, Compaction of Titanium Powders, . Metall. Mater. Trans. A, 42A (2011).1325-1333.

  • [10] Ge Rong-de, A New Powder Compaction Equation, The International Journal of Powder Metallurgy, 27 (3) (1991).211-214.

  • [11] L. Parilák, E. Dudrová, R. Bidulský, M. Kabátová, Quantification of Metal Powder Compressibility in Uniaxial Compaction, Metallurgy World Congress and Exhibition. Euro PM 2004. Vol. 1., Vienna, 17.-21.10.2004. Ed. H. Danninger, R. Ratzi, EPMA 2004, p. 593-598

  • [12] H. Hafizpour, A. Simchi, S. Parvizi, Analysis of the compaction behavior of Al-SiC nanocomposites using linear and non-linear compaction equations, Advanced Powder Technology 21(3) (2010) 273.

  • [13] A. Miskova, E. Dudrova, H. Brunckova, M. Faberova, R. Bures, Compressibility of Fe/SiO2 Coated Composite Powders ,PM2010 World Congress - Fundamentals of Pressing, p. 39

  • [14] R. Bureš, M.Fáberová, Evaluation of Compressibility of Micro-Composite Systems , PM2010 World Congress - Compaction Equipment, p.81

  • [15]S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, V. K. Iyer, Evaluation of compaction equations and prediction using adaptive neuro-fuzzy inference system on compressibility behavior of AA 6061 100− x-x wt.% TiO 2 nanocomposites prepared by mechanical alloying, Powder Technol. 209 (1) (2011).124.

  • [16]. M. Moreno, C. G. Oliver, Densification of al powder and Al-Cu matrix composite (reinforced with 15% saffil short fibres) during axial cold compaction , Powder Technol. 206(3) (2011).297.

  • [17] C. Machio, R. Machaka, T. Shabalala, H. K. Chikwanda, Analysis of the Cold Compaction Behaviour of TiH2-316L Nanocomposite Powder Blend Using Compaction Models, Materials Science Forum, 828-829 (2015).121.

  • [18] C.A. Leon, G. Rodriguez-Ortiz, E.A. Aguilar-Reyes, Cold compaction of metal-ceramic powders in the preparation of copper base hybrid materials, Materials Science and Engineering A 526 (2009).106.- [19] C. Ghiţă, I.N. Popescu, Experimental research and modelling of compaction behaviour of Al based composite with SiC particles, Comp Mater Sci, 64 (2012) 136-140.

  • [20] S.Sivasankaran, PhD Thesis, Coordinator Prof. Dr. R.Narayanasamy Study on Synthesis, Characterization and Workability behavior of nanocrystalline AA6061 alloy reinforced with TiO2 Composite prepared by Mechanical alloying, NIT,Tiruchirappalli.

  • [21] R. Machaka and H. K. Chikwanda, An Experimental Evaluation of The Gerdemann-Jablonski Compaction Equation, Metall Mater Trans A, 46 (5) (2015).2194

  • [22] I.N. Popescu, R. Vidu, Compaction of Metal - Ceramic Powder Mixtures. Part. 1, ARA Journal of Sciences, old ISSN 0896-1018, in press.

  • [23] I.N. Popescu, R. Vidu, Compaction of Metal - Ceramic Powder Mixtures. Part. 2, ARA Journal of Sciences, old ISSN 0896-1018, in press.

  • [24] Cardei Petru , Gageanu Iuliana, A Critical Analysis ofEmpirical Formulas Describing The Phenomenon of Compaction of the Powders, J. Modern Technology & Engineering, 2(1) (2017).1-20

  • [25] P. Han, X. Z. An, Y. X. Zhang, Z. S. Zou, FEM Modeling on the Compaction oF Fe and Al Composite Powders, J. Min. Metall. Sect. B-Metall. 51 (2) B (2015) 163 - 171

  • [26] Sinka, I.C. Modelling Powder Compaction, Kona-Powder and Particle 25 (2007) 4-22.

  • [27] D. Poquillon, J. Lemaitre, , Cold compaction of iron powders-relations between powder morphology and mechanical properties Part I: Powder preparation and compaction, Powder Technology 126 (2002) 65- 74.

  • [28] Rusanescu C.O , Jinescu C, Rusanescu M., Enescu M. C., Anghelina F. V., Stoian E. V. , Despa V., Mathematical Modelling of the Stress-Strain Curve for 31VMn12 Ecological Steel, Materiale Plastice 54 ( 3) (2017) 409-413.

  • [29] Faruk Güner Ömer Necati Cora Hasan Sofuoğlu, Numerical modeling of cold powder compaction using multi particle and continuum media approaches, Powder Technology 271 (2015) 238-247.

  • [30] C.L. Martin, D. Bouvard, Study of the cold compaction of composite powders by the discrete element method, Acta Materialia 51 (2003) 373-386

  • [31] Harthong, Barthelemy; Jerier, Jean-Francois; Richefeu, Vincent; et al. Contact impingement in packings of elasticplastic spheres, application to powder compaction, International Journal of Mechanical Sciences, 61 (1 ) (2012) 32-43

  • [32] Harthong, Barthelemy; Imbault, Didier; Doremus, Pierre, The study of relations between loading history and yield surfaces in powder materials using discrete finite element simulations Journal of the Mechanics and Physics of Solids, 60 (4) 2012, 784-801

  • [33] Jerier, J-F; Hathong, B.; Richefeu, V.; et al., Study of cold owder compaction by using the discrete element method, Conference: Symposium STPMF 2009, Montpellier, FRANCE, MAY 25-27, 2009, Powder Technology, 208 (2) SI, 537-541.

  • [34] Fen Huang, Xizhong An; Yuxi Zhang et al., Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders, 1st International Workshop on Computational Particle Technology Suzhou, Peoples R China, Powder Technology, 314 SI (2016) 39-48.

  • [35] Goran Frenning, Compression mechanics of granule beds: A combined finite/discrete element study, Chemical Engineering, Science, 65 (8 ) (2010) 2464-2471.

  • [36]Goran Frenning, An efficient finite/discrete element procedure for simulating compression of 3D particle assemblies, Computer Methods In Applied Mechanics And Engineering, 197 (49-50) (2008). 4266-4272.

  • [37] DT Gethin, RS Ransing, RW Lewis, et al., Numerical comparison of a deformable discrete element model and an equivalent continuum analysis for the compaction of ductile porous material, COMPUTERS & STRUCTURES 79 ( 13) (2001). 1287-1294.

  • [38] K. T. Kim, J. H. Cho, Cold Compaction of Composite Powders, J. Eng. Mater-T. Asme., 122 (2000) 119-128.

  • [39] K. T. Kim, J. H. Cho, A densification model for mixed metal powder under cold compaction, Int. J. Mech. Sci., 43 (2001)2929-2946

  • [40] A. Kadir Eksi, Experimental and numerical studies of metallic powders subjected to cold isostatic pressing, International Journal of Materials Research 102 (5) (2011) 572.

  • [41] Erik Olsson, PhD Thesis, Micromechanics of Powder Compaction, Royal Institute of Technology, Stockholm, 2015.

  • [42] S. Shima, M. Oyane, Plasticity theory for porous metals, Int. J. Mech. Sci., 18 (1976) 285- 291

  • [43] A. L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media, ASME J. Eng. Mater. Technol., 99 (1977) 2-15.

  • [44] M. F. Moreno, C. J. R. González Oliver, Densification of Al powder and Al-Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction, Powder. Technol., 206 (2011) 297-305.

  • [44] A. K. Eksi, A. H. Yuzbasioglu, Effect of sintering and pressing parameters on the densification of cold isostatically pressed Al and Fe powders,.Mater. Design, 28(4) (2007) 1364..

  • [45]W. Wu, G. t. al., Experimental and numerical investigation of idealized consolidation: Part 1:Static compaction, Acta Mater., 48 (2000) 4323-4330.

  • [46] D. Gethin, A.K. Arin, D.V. Tran, R.W Lewis, , Compaction and Ejection of Green Powder Compacts, Powder Metallurgy, 37(1) (1994) 42-54.

  • [47] T. Sheppard, H.B.McShane, Strength of Cold-Pressed Compacts , Powder Metallurgy, 23 (3).(1980) 120-124.

  • [48] F. Fischmeister, HE. Arzt, Powder Metallurgy, Densifcation of Powders by Particle Deformation, 26(2) (1983) 82-88.

  • [49] I.N. Popescu, S. Zamfir, F. V.Anghelina, C.O. Rusǎnescu, Fabrication through P/M of ecological aluminum based composite materials. Part 1-Characterization and densification of mixture powders, Proceedings of the 2nd Int. Conference on MEQAPS, Constantza, Sep 03,- 05(2010) 200-205.

  • [50] Amir R. Khoei, Computational Plasticity in Powder Forming Processes, Elsevier Publisher, 2005.


Journal + Issues