Porous Metallic Biomaterials Processing (Review) Part 1: Compaction, Sintering Behavior, Properties and Medical Applications

Open access

Abstract

Over the last few decades, researchers has been focused on the study of processing using different methods of new biocompatible and/or biodegradable materials such as permanent or temporary medical implants in reconstructive surgery. The advantages of obtaining biomedical implants by Powder Metallurgy (P/M) techniques are (i) obtaining the near-net-shaped with complex forms, (ii) making materials with controlled porosity or (iii) making mechanically resistant sintered metallic materials used as reinforcing elements for ceramic/polymeric biocompatible materials. In this first part of the 2-part review, the most used and newest metallic biomaterials obtained by P/M methods are presented, along with their compaction and sintering behavior and the properties of the porous biomaterials studied in correlation with the biomedical domain of application.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Moravej D. Mantovani Review. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities Int. J. Mol. Sci. 12 (2011) 4250-4270.

  • [2] F.V. Anghelina D. Ungureanu V. Bratu I.N. Popescu* C.O. Rusanescu Fine Structure Analysis of Biocompatible Ceramic Materials Based Hydroxyapatite and Metallic Biomaterials 316L APPL SURF SCI 285 A (2013) 65-71.

  • [3] J. Čapek D. Vojtěch Powder metallurgical techniques for preparation of biomaterials Manuf.Technol. 15(6)(2015) 964-969.

  • [4] H. Hermawan H. Alamdari D. Mantovani D. Dube Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy Powder Metall. 51(2008) 38–45.

  • [5] Ayşe Eda Onar and Koray Gençoğlan Biomaterials (lecture) Muğla Sıtkı Koçman University.

  • [6] D. Vojtech J. Kubasek J. Serak P. Novak Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation Acta Biomaterialia 7(9)(2011)3515-3522.

  • [7] F.Y. Zhou B.L. Wang et.al. Microstructure corrosion behavior and cytotoxicity of Zr–Nb alloys for biomedical application Materials Science and Engineering C 32(4) May (2012) 851–857.

  • [8] C.M. Cotrut M. Tarcolea M.D. Vranceanu A.I. Gherghilescu N. Ghiban F. Baciu I.C. Ionescu Stainless Steel Brackets: In Vitro Corrosion Behaviour And Mechanical Debonding Test Solid State Phenomena 216 (2014) 187-193.

  • [9] Robert B. Heinmann Structure properties and biomedical performance of osteoconductive bioceramic coatings Surface & Coatings Technology 233 (2013) 27–38.

  • [11] H.F. Li F.Y. Zhou L. Li Y.F. Zheng Design and development of novel MRI compatible zirconium ruthenium alloys with ultralow magnetic susceptibility NATURE Scientific Reports 6 Article number: 24414 (2016).

  • [12] K. Mediaswanti et al. A Review on Bioactive Porous Metallic Biomaterials J Biomim Biomater Tissue Eng 18(1) (2013) 2-8.

  • [15] G. Ryan A. Pandit D. Panagiotis-Apatsidis Fabrication methods of porous metals for use in orthopaedic applications Biomaterials 27 (2006) 2651–2670.

  • [16] Montasser Dewidar Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications Int. Journal of Mech. & Mechatronics Eng. IJMME-IJENS 12 (1) (2012) 10-24.

  • [17] Luana Marotta Reis de Vasconcellos et. al. Porous Titanium Scaffolds Produced by Powder Metallurgy for Biomedical Applications Materials Research 11 (3) (2008) 275-280.

  • [18] Jiunn-Der Liao Han Lee and Chih-Kai Yao Powder Metallurgy Based Porous Metal Biomaterials J Powder Metall Min (2013) 2-4.

  • [19] Gang Chen Peng Cao Neil Edmonds Porous NiTi alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures Materials Science & Engineering A 582 (2013) 117–125.

  • [20] A.H. Yusop A.A. Bakir N.A. Shaharom M.R. Abdul Kadir and H. Hermawan Porous BiodegradableMetals for Hard Tissue Scaffolds: A Review International Journal of Biomaterials Article ID 641430 (2012) 1-10.

  • [21] Zhu S.L. Yang X.J. Fu D.H. Zhang L.Y. Li C.Y. Cui Z.D. Stress–strain behavior of porous NiTi alloys prepared by powders sintering Materials Science and Engineering A 408 (2005) 264–268.

  • [23] G.I. Friedman Titanium powder metallurgy Inter. J. Powder Metall. 6 (2) (1970) 43–54.

  • [24] Ma Qian Cold Compaction and Sintering of Titanium and Its Alloys for Near-Net-Shape or Preform Fabrication Int. Journal of Powder Metallurgy 46 (5)(2010)29-44.

  • [25] I.M. Robertson G.B. Schaffer Review of densification of titanium based powder systems in press and sinter processing. Powder Metallurgy 53 (2)(2010) 146-162.

  • [27] Miriam Kupková et al. Corrosion Behaviour of Powder Metallurgy Biomaterials from Phosphated Carbonyl-Iron Powders Int. J. Electrochem. Sci. 10 (2015) 671-681.

  • [29] H. Hermawan D. Dube D. Mantovani Development of degradable Fe-35Mn alloy for biomedical application Adv. Mater. Res. 15 (2007) 107–112.

  • [30] H. Hermawan Conception Développement et Validation d’Alliages Métalliques Biodégradables pour Emploi dans le Domaine de la Chirurgie Endovasculaire. PhD Thesis Université Laval Quebec Canada May 2009.

  • [31] R. Waksman et. al. Short-term effects of biocorrodible iron stents in porcine coronary arteries J. Interv. Cardiol. 21 (2008) 15–20.

  • [32] B. Wegener et. al Microstructure cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater. Sci. Eng. B 176 (2011) 1789.

  • [33] Y. Torres J.J. Pavon I. Nieto J.A. Rodriguez Conven-tional Powder Metallurgy Process and Characterization of Porous Titanium for Biomedical Applications Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 42 (2011) 891-900.

  • [34] L. Bolzoni E.M. Ruiz-Navas and E. Gordo Processing of Elemental Titanium by Powder Metallurgy Techniques Materials Science Forum 765 (2013) 383-387.

  • [35] Amigó A; Zambrano J; Martinez S; Amigó V. Microstructural Characterization of Ti-Nb-(Fe-Cr) Alloys Obtained by Powder Metallurgy European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings; Shrewsbury EPMA (2014) 20-25.

  • [38]E. Schüller O.A. Hamed M. Bram D. Sebold H.P. Buchkremer D. Stöver Hot Isostatic Pressing (HIP) of Elemental Powder Mixtures and Prealloyed Powder for NiTi Shape Memory Parts Adv. Eng. Mater.5 (12) (2003) 918–924.

  • [39] Aris Widyo Nugroho PhD Thesis. Investigation of the production and mechanical properties of porous Beta Titanium alloy compacts prepared by powder metallurgy processes for biomedical applications April 2013.

  • [40] Y.F. Zheng X.N. Gu F. Witte Biodegradable metals Materials Science and Engineering R 77 (2014) 1–34.

  • [41] Y. P. Zhang B. Yuan M. Q. Zeng C. Y. Chung X. P. Zhang High porosity and large pore size shape memory alloys fabricated by using pore-forming agent (NH4HCO3) and capsule-free hot isostatic pressing Journal of Materials Processing Technology 192–193 ((2007) 439-442.

  • [42] E. D. Spoerke et al. Titanium with aligned elongated pores for orthopedic tissue engineering applications In: Journal of Biomedical Materials Research Part A 84A (2) (2008) 402-412.

  • [43] Y. Zhao M. Taya Y. Kang A. Kawasaki Compression behavior of porous NiTi shape memory alloy Acta Mater. 53 (2005) 337–343.

  • [44] A. Dudek M. Klimas Composites based on titanium alloy Ti-6Al-4V with an addition of inert ceramics and bioactive ceramics for medical applications fabricated by spark plasma sintering (SPS method) In: Materialwissenschaft Und Werkstofftechnik 46 (3) (2015) 237-247.

  • [45] W. M. R. M. Daoush et. al. Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering In: Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46A (3) (2015) 1385-1393.

  • [46] M. Fousova J. Capek D. Vojtech Preparation of magnesium-zinc alloy by mechanical alloying Manufacturing Technology 14 (3) (2014) 304-309.

  • [47] C.Y. Tang L.N. Zhang C.T. Wong K.C. Chan T.M. Yue Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering Mater.Sci.Eng. A528 (2011) 6006–6011.

  • [48] J.L. Xu et. al. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering Journal of Alloys and Compounds 645 (2015) 137–142.

  • [49] P. Novák et al. Formation of Ni–Ti intermetallics during reactive sintering at 500–650 °C Materials Chemistry and Physics 155 (2015) 113-121.

  • [50] M. Whitney S. F. Corbin R. B. Gorbet Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis Acta Materialia 56(3) (2008). 559-570.

  • [51] B.Y. Li L.J. Rong Y.Y. Li V.E. Gjunter Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure ActaMater. 48 (2000) 3895–3904.

  • [53] D.T. Pham S.S. Dimov Rapid prototyping and rapid tooling--the key enablers for rapid manufacturing Proc. Instn Mech. Engrs 217 C: J. Mechanical Engineering Science (2003) 1-23.

  • [54] L.A. Dobrzański The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry Archives of Materials Science and Engineering 80 (2) (2016) 64-85.

  • [55] *** Overview of additive manufacturing and powder metallurgy processes Powder metallurgy and additive manufacturing The Linde Group www.boconline.co.uk.

  • [56] Helena N Chia and Benjamin M Wu Recent advances in 3D printing of biomaterials Journal of Biological Engineering 9(4) (2015) 1-14.

  • [57] G. Chen G. A. Wen P. Cao N. Edmonds and Y. M. Li Processing and characterisation of porous NiTi alloy produced by metal injection moulding Powder Inject. Mould. Int. 2012 6 (3) 81–86.

  • [58] G. Chen P. Cao G. Wen N. Edmonds Y. Li Using an agar-based binder to produce porous NiTi alloys by metal injection moulding Intermetallics 37 (2013) 92–99.

  • [61] Randall M. German Progress in Titanium Metal Powder Injection Molding Materials 6 (2013) 3641-3662.

  • [62] D. Cristea I. Ghiuţă D. Munteanu Tantalum Based Materials for Implants and Prostheses Applications Bulletin of the Transilvania University of Braşov 8 (57) No. 2 Series I: Engineering Sciences (2015) 151-158.

  • [63] C. Guerra C. Aguilar et al. Production and characterization of mechanical properties of Ti–Nb–Ta–Mn alloys foams for biomedical applications Powder Metallurgy 57 (5) (2014) 1-5.

  • [64] C.O. Rusănescu M. Rusănescu T. Iordănescu F.V. Anghelina Mathematical relationships between alloying elements and technological deformability indexes JOAM 15 (7-8) (2013) 718-723.

  • [65] I. Marek P. Novák et. al. Powder Metallurgy Preparation of Co-Based Alloys for Biomedical Applications ACTA PHYSICA POLONICA A. 128 (4)(2015) 597-601.

  • [66] Muziwenhlanhla Arnold Masikane MscThesis A Investigation into the microstructure and tensile properties of unalloyed titanium and Ti-6Al-4V alloy produced by powder metallurgy casting and layered manufacturing University of the Witwatersrand Johannesburg 2015.

  • [67] L. Reclaru R.E. Unger C.J. Kirkpatrick C. Susz P.Y. Eschler M.H. Zuercher I Antoniac H Lüthy Ni–Cr based dental alloys; Ni release corrosion and biological evaluation Materials Science and Engineering: C 32 (6) (2012) 1452-1460.

  • [68] V.K. Balla S. Bose N.M. Davis A. Bandyapadhyay Tantalum—A bioactive metal for implants J. Miner. Met. Mater. Soc. 62 (7) (2005) 61.

  • [69]. B.R. Levine S. Sporer et al. Experimental and clinical performanceof porous tantalum in orthopaedic surgery Biomaterials 27 (2006) 4671-4681.

  • [70] Xue-Nan GU Yu-Feng ZHENG A review on magnesium alloys as biodegradable materials Front. Mater. Sci. China 4(2) (2010) 111–115.

  • [71] Zibo Tang Jialin Niu Hua Huang Hua Zhang Jia Pei Jingmin Ou Guangyin Yuan. “Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications” Journal of the Mechanical Behaviour of Biomedical Materials 72 (2017) 182-191.

  • [72] P. Thomsen C. Larsson L. E. Ericson Structure of The Interface Between Rabbit Cortical Bone And Implants of Gold Zirconium And Titanium Journal Of Materials Science: Materials In Medicine 8 (1997) 653—665.

  • [73] Hussein M.A. C. Suryanarayana M.K. Arumugam and N. Al-Aqeeli. “Effect of sintering parameters on microstructure mechanical properties and electrochemical behavior of Nb–Zr alloy for biomedical applications Materials & Design 83 (2015) 344–351.

  • [74] Alison Cowley and Brian Woodward A Healthy Future: Platinum in Medical Applications Platinum Metals Rev. 55 (2) (2011) 98–107.

  • [75] W. F. Agnew T. G. H. Yuen D. B. McCreery and L. A. Bullara Histopathologic evaluation of prolonged intracortical electrical stimulation Exp. Neurol. 92 (1) (1986) 162.

  • [76] M. Geetha A. K. Singh R. Asokamani and A. K. Gogia Ti based biomaterials the ultimate choice for orthopaedic implants – a review Prog. Mater. Sci. 2009 54 397–425.

  • [77] M. Walter Benefits of PM Processed Cobalt-Based Alloy for Orthopaedic Medical Implants Carpenter Technology Corp. Wyomissing PA USA 2006.

  • [78]. Yang H. Li J. et al.: Structural preparation and biocompatibility evaluation of highly porous Tantalum scaffolds. In: Materials Letters 100 (2013) p. 152-155.

  • [79]. Nan Li Yufeng Zheng Novel Magnesium Alloys Developed for Biomedical Application: A Review J. Mater. Sci. Technol. 2013 29(6) 489-502.

  • [80]. Pavel Salvetr Pavel Novák Dalibor Vojtìch Porous Magnesium Alloys Prepared By Powder Metallurgy MTAEC9 50(6) (2016) 917-922.

  • [10] Manoj Gupta Ganesh Kumar Meenashisundaram Synthesis of Magnesium-Based Biomaterials (Chapter 2) Springer Briefs in Materials Insight into Designing Biocompatible Magnesium Alloys and Composites pp 17-34 2015.

  • [13] R. Goodall Porous metals: foams and sponges (Chapter 10) Advances in Powder Metallurgy Properties processing and applications Edited by Isaac Chang and Yuyuan Zhao Woodhead Publishing Limited pp. 273-307 2013.

  • [14] Goodall R. Andreas Mortensen Porous Metals (Chapter 24) Physical Metallurgy Vol. III Edited by David E. Laughlin and Kazuhiro Hono ISBN: 978-0-444-53770-6 Elsevier Publisher pp. 2399–2595 2014.

  • [22] M. Qian G.B. Schaffer C.J. Bettles Sintering of titanium and its alloys(Chapter 13) Sintering of Advanced Materials Woodhead Publishing Series in Metals and Surface Engineering pp. 324-355 2010.

  • [26] M J Donachie Jr. Titanium-A Technical Guide 2nd ed. Materials Park Ohio ISBN: 978-0-87170-686-7 ASM International Publisher pp. 46–53 2000.

  • [28] Erhard Klar Prasan K. Sama Powder Metallurgy Stainless Steels: Processing Microstructures and Properties (Chapter 5) ASM International Publisher ISBN: 978-0-87170-848-9 2007.

  • [36] F.H. (Sam) Froes Powder metallurgy of titanium alloys (Chapter 8) Advances in Powder Metallurgy Properites processing and applications Edited by Isaac Chang and Yuyuan Zhao Woodhead Publishing Limited (2013) p. 202-240.

  • [37] Biomaterials Science-An Introduction to Materials in Medicine Academic Press ISBN 0-12-582460-2 1996.

  • [52] M. Bram T. Ebe and M. Wolff A.P. Cysne Applications of powder metallurgy in biomaterials (Chapter 18) Advances In Powder Metallurgy: Properties Processing And Applications Woodhead LTD Publisher 520-554 2013.

  • [59] R.M. German Powder Injection Molding Metal Powder Industries Federation Princeton Publisher 1990 ISBN 0918404959.

  • [60] I. Todd and A. T. Sidambe Developments in metal injection moulding (MIM) (Chapter 6) Advances in Powder Metallurgy Properties processing and applications Edited by Isaac Chang and Yuyuan Zhao Woodhead Publishing Limited pp. 109-146 2013.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 538 314 12
PDF Downloads 468 326 26