Towards automation of measurement processes of surface water parameters by a remote-controlled catamaran

Open access


This paper describes a way of determining selected water parameters using a prototype of a remote-controlled catamaran. The remote controlling allows to steer the boat and to manage the measurement process from the shore. It is possible to monitor the water parameters online as well as to store them and analyze them afterwards. The measured parameters are determined mainly using potentiometric methods and include several ion concentrations. The system is orientated towards monitoring breeding ponds or other similar surface waters. The mechanical construction of the catamaran, its electronic circuits and implemented software are described in detail in the paper. Conclusions obtained from preliminary tests are also included. The described construction allows analysts to perform simple and inexpensive remote measurements or assessments of water quality and reduces the time of such analysis in comparison to traditional sampling.

[1] M. R. A. Matos, M. T. S. R. Gomes, J. A. B. P. Oliveira, E. Alves, M. A. S. D. A. Cunha, A. Almeida, and A. Rudnitskaya, “Assessment of transition metals toxicity in environmental matrices using potentiometric electrodes: Inorganic mercury(ii) in the seawater as a case study”, Electroanalysis 27 (8), 1932-1938 (2015).

[2] H. Zia, N. R. Harris, G. V. Merrett, M. Rivers, and N. Coles, “The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks”, Comput. Electron. Agric. 96, 126-138 (2013).

[3] O. Korostynska, A. Mason, and A. Al-Shamma’a, “Monitoring of nitrates and phosphates in wastewater: current technologies and further challenges”, Int. J. Smart Sensing Intell. Syst. 5 (1), 149-176 (2012).

[4] J. Wang, X. li Ren, Y. li Shen, and S.-Y. Liu, “A remote wireless sensor networks for water quality monitoring” in Innovative Computing Communication 7-12 (2010).

[5] K. Murphy, B. Heery, T. Sullivan, D. Zhang, L. Paludetti, K. T. Lau, D. Diamond, E. Costa, N. O’Connor, and F. Regan, “A low-cost autonomous optical sensor for water quality monitoring”, Talanta 132, 520-527 (2015).

[6] S. L. Castro, G. A. Wick, and J. J. Buck, “Comparison of diurnal warming estimates from unpumped Argo data and SEVIRI satellite observations”, Remote Sens. Environ. 140, 789-799 (2014).

[7] P.-J. Superville, Y. Louis, G. Billon, J. Prygiel, D. Omanović, and I. Pižeta, “An adaptable automatic trace metal monitoring system for on line measuring in natural waters”, Talanta 87, 85-92 (2011).

[8] M. McLaughlin, J. Brooks, and A. Adeli, “A new sampler for stratified lagoon chemical and microbiological assessments”, Environ. Monit. Assess. 186 (7), 4097-4110 (2014).

[9] R. Gwiazda, A. Woźnica, B. Łozowski, M. Kostecki, and A. Flis, “Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir”, Oceanol. Hydrobiol. St. 43 (4), 418-426 (2014).

[10] R. Koprowski, Z. Wróbel, A. Kleszcz, S. Wilczyński, A. Woźnica, B. Łozowski, M. Pilarczyk, J. Karczewski, and P. Migula, “Mobile sailing robot for automatic estimation of fish density and monitoring water quality”, Biomed. Eng. Online 12 (1), 1-19 (2013).

[11] ”The directive of the Minister of Environment from 22 October 2014 on the classification of the status of surface waters and environmental quality standards for priority substances”, Journal of Laws of the Republic of Poland, item 1482, (2014).

[12] EC, “Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy” (2000).

[13] A. Jang, Z. Zou, K. K. Lee, C. H. Ahn, and P. L. Bishop, “Stateof- the-art lab chip sensors for environmental water monitoring”, Meas. Sci. Technol. 22, 032001 (2011).

[14] T. Grychowski and L. Kowalski, “The microprocessor mobile device for measurement of low concentration of carbon monoxide in air (in Polish)”, Przegląd Elektrotechniczny 87 (7), 90-93 (2011).

[15] A. Wiora, J. Wiora, and A. Kozyra, “Dynamic models of ion-selective electrodes and their interface electronics”, Metrol. Meas. Syst. 13 (4), 421-432 (2006).

[16] H.-J. Kim, W.-K. Kim, M.-Y. Roh, C.-I. Kang, J.-M. Park, and K. A. Sudduth, “Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes”, Comput. Electron. Agric. 93, 46-54 (2013).

[17] A. Dybko, “Optoelectronic system for water quality monitoring”, Bull. Pol. Acad. Sci.-Tech. Sci. 56 (2), 173-175 (2008).

[18] B. Nikolsky and E. Materova, Ion-Selective Electrodes, Leningrad, Khimia, 1980.

[19] B. P. Nikolsky Zh. Phys. Khim. 10, 495-510 (1937).

[20] K. A. Rubinson and J. F. Rubinson, Contemporary Instrumental Analysis, New Jersey, Prentice Hall (2000).

[21] K. Stebel, D. Choinski, “Performance improvement for quasi periodical disturbances in PH control”, Adv. Electr. Comput. Eng. 15 (1), 123-134 (2015).

[22] H. Xu, Y. Wang, Z. Luo, and Y. Pan, “A miniature all-solid-state calcium electrode applied to in situ seawater measurement”, Meas. Sci. Technol. 24, 125105 (2013).

[23] M. Jabłońska-Czapla, S. Szopa, K. Grygoyć, A. Łyko, and R. Michalski, “Development and validation of HPLC-ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Plawniowice reservoir (Poland) water and bottom sediments variability study”, Talanta 120, 475-483 (2014).

[24] B. Krasnodebska-Ostrega, K. Dmowski, E. Stryjewska, and J. Golimowski, “Determination of thallium and other elements (As, Cd, Cu, Mn, Pb, Se, Sb, and Zn) in water and sediment samples from the vicinity of the zinc-lead smelter in Poland”, J. Soil. Sediment. 5, 71-73 (2005).

[25] A. Samecka-Cymerman and A. Kempers, “Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification”, Sci. Total Environ. 281, 87-98 (2001).

[26] J. Dominik, D. A. L. Vignati, B. Koukal, M.-H. Pereira de Abreu, R. Kottelat, E. Szalinska, B. Baś, and A. Bobrowski, “Speciation and environmental fate of chromium in rivers contaminated with tannery effluents”, Eng. Life Sci. 7, 155-169 (2007).

[27] E. Podgorni and M. Rzasa, “Investigation of the effects of salinity and temperature on the removal of iron from water by aeration, filtration, and coagulation”, Pol. J. Environ. Stud. 23 (6), 2157-2161 (2014).

[28] D. Anders and M. Rzasa, “The possibility of composting animal waste products”, Environ. Prot. Eng. 33 (2), 7-15 (2007).

[29] K. Danielewski, J. Weremczuk, R. Jachowicz, and A. Michalski, “Mobile system for measuring water pollution (in Polish)”, Przegląd Elektrotechniczny 9a, 79-82 (2011).

[30] G. Szafrański, W. Janusz, and R. Czyba, “Managing system architecture for multi-rotor autonomous flying platform-practical aspects”, Man-Machine Interactions 3 in Advances in Intelligent Systems and Computing 242, 131-138 (2014).

[31] M. Janiak and C. Zieliński, “Control system architecture for the investigation of motion control algorithms on an example of the mobile platform Rex”, Bull. Pol. Ac.: Tech. 63 (3), 667-678 (2016).

[32] J.-M. Froidefond and S. Ouillon, “Introducing a mini-catamaran to perform reflectance measurements above and below the water surface”, Opt. Express 13, 926-936 (2005).

[33] T. Armstrong, Ship Design and Construction, ch. 45. Catamarans. Society of Naval Architects and Marine Engineers (SNAME) (2004).

[34] G. H. Elkaim, “System identification-based control of an unmanned autonomous wind-propelled catamaran”, Control Eng. Pract. 17, 158-169 (2009).

[35] B. Jakubiec, “Fuzzy logic speed controller for brushless dc motor drive [Napęd bezszczotkowego silnika prądu stałego z rozmytym regulatorem prędkości]”, Przegląd Elektrotechniczny 90 (12), 211-213 (2014).

[36] R. Kopka and W. Tarczyński, “Measurement system for determination of supercapacitor equivalent parameters”, Metrol. Meas. Syst. 20 (4), 581-590 (2013).

[37] B. Vunderl, M. Zagar, and D. Basch, “Remote control of model vehicles using android mobile devices” in 36th International Convention on Information Communication Technology Electronics Microelectronics (MIPRO), 901-906 (2013).

[38] P. Liu, W. Farias, S. Gibson, and D. Ross, “Remote control of a robotic boat via the internet” in IEEE International Conference on Information Acquisition 548-553 (2005).

[39] S. Kedar and S. Thakare, Principles of Programming Languages. Technical Publications (2009).

[40] T. W. Schultz, C and the 8051. PageFree Pub. 3 ed., (2004).

[41] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow programming languages”, ACM Comput. Surv. 36, 1-34 (2004).

[42] K. N. Whitley, “Visual programming languages and the empirical evidence for and against”, J. Visual. Lang. Comput., 8, 109-142 (1997).

[43] Fluka Chemie AG, Buchs, Selectophore Ionophores, Membranes, Mini-ISE (1996).

[44] A. Kozyra, J. Wiora, and A. Wiora, “Calibration of potentiometric sensor arrays with a reduced number of standards”, Talanta 98, 28-33 (2012).

[45] S. Zuo, K. Wan, S. Zhou, L. Ye, and S. Ma, “Environmental monitoring and assessment of the water bodies of a pre-construction urban wetland”, Environ. Monit. Assess. 186 (11), 7349-7355 (2014).

[46] J. Wiora, “Improvement of measurement results based on scattered data in cases where averaging is ineffective”, Sens. Actuator B-Chem. 201, 475-481 (2014).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 180 13
PDF Downloads 72 72 4