Symbolic integration with respect to the Haar measure on the unitary groups

Open access

Abstract

We present IntU package for Mathematica computer algebra system. The presented package performs a symbolic integration of polynomial functions over the unitary group with respect to unique normalized Haar measure. We describe a number of special cases which can be used to optimize the calculation speed for some classes of integrals. We also provide some examples of usage of the presented package.

[1] B. Collins and P. Śniady, “Integration with respect to the Haar measure on unitary, orthogonal and symplectic group”, Commun. Math. Phys. 264, 773-795 (2006).

[2] N. Ullah and C. Porter. “Expectation value fluctuations in the unitary ensemble”, Physical Review 132 (2), 948 (1963).

[3] D. Weingarten, “Asymptotic behavior of group integrals in the limit of infinite rank”, Journal of Mathematical Physics 19, 999 (1978).

[4] Z. Puchała and J. A. Miszczak, “IntU package for Mathematica” (2011). Software available at http://zksi.iitis.pl/wiki/projects:intu.

[5] W. Fulton and J. Harris, Representation Theory: A First Course - Graduate Texts in Mathematics vol. 129, Springer Verlag (1991).

[6] G. James and A. Kerber, “The representation theory of the symmetric group”, Encyclopaedia of Mathematics, vol .16 (1981).

[7] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer Verlag (2001).

[8] D. Bernstein, “The computational complexity of rules for the character table of Sn”, Journal of Symbolic Computation 37 (6), 727-748 (2004).

[9] F. Hiai and D. Petz, “The semicircle law, free random variables and entropy”, Amer. Mathematical Society 77 (2006).

[10] C. Donati-Martin and A. Rouault, “Truncations of Haar unitary matrices, traces and bivariate Brownian bridge”. Arxiv preprint, arXiv:1007.1366 (2010).

[11] Z. Puchała, J. A. Miszczak, P. Gawron, C. F. Dunkl, J. A. Holbrook, and K. Życzkowski, “Restricted numerical shadow and the geometry of quantum entanglement”, Journal of Physics A: Mathematical and Theoretical 45 (41), 415309 (2012).

[12] J. Miszczak, “Generating and using truly random quantum states in Mathematica”, Comput. Phys. Commun. 183 (1), 118-124 (2012).

[13] C. F. Dunkl, P. Gawron, J. A. Holbrook, Z. Puchała, and K. Życzkowski, “Numerical shadows: measures and densities on the numerical range”, Linear Algebra Appl. 434, 2042-2080 (2011).

[14] C. F. Dunkl, P. Gawron, J. A. Holbrook, J. A. Miszczak, Z. Puchała, and K. Życzkowski, “Numerical shadow and geometry of quantum states”, J. Phys. A: Math. Theor. 44 (33), 335301 (2011).

[15] M. Enríquez, Z. Puchała, and K. Życzkowski, “Minimal Rényi- -Ingarden-Urbanik entropy of multipartite quantum states”, Entropy 17 (7), 5063 (2015).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 275 18
PDF Downloads 194 173 12