Application of quantum cascade lasers to trace gas detection

Open access

Abstract

The potential of Quantum Cascade Laser technology has been recently harnessed in industry, medicine and military to create a range of original infrared gas sensors. These sensors have opened up many new applications due to compact size, excellent sensitivity, robust construction and low power requirements. They rely on infrared absorption spectroscopy to determine identity and quantity of gases. The measurement of these gases has relied on different technologies including multi-pass spectroscopy, photoacoustic spectroscopy, cavity ring down spectroscopy, and their various modifications. In this review paper some technologies are described in terms of its advantages/disadvantages in many application. The results of own works about methane, ammonia, nitric oxide, nitrous oxide, and carbonyl sulfide detection are presented as well

[1] B. Buszewski, D. Grzywiński, T. Ligor, T. Stacewicz, Z. Bielecki, and J.Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques”, Bioanalysis 5 (18), 2287-306, doi: 10.4155/bio.13.183 (2013).

[2] W. Gopel, J. Hessel, and J.N. Zemel, Sensors. A Comprehensive Survey, VCH Verlagesellschaft mbH, Berlin, 1995.

[3] G.F. Fine, L.M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensor in environmental monitoring”, Sensors 10, 5469-5502, doi: 10.3390/s100605469 (2010).

[4] J.S. Wilson, Sensor Technology Handbook, Elsevier, New York, 2005.

[5] Kostrev, G. Wysocki, Y. Bakhirkin, S. So, M. Fraser, F. Tittel, and R.F. Curl, “Application of quantum cascade lasers to trace gas analysis”, Appl. Phys. B 90, 165-176, doi: 10.1007/s00340-007-2846-9 (2008).

[6] M. Murtz, “Breath diagnostics using laser spectroscopy”, Optics &Photonics News 16, 30-35 (2005).

[7] W. Boots, J.B.N van Berkel, J.W. Dallinga, A. Smolińska, E.F. Wouters, and F.J. van Schooten, “The versatile use of exhaled volatile organic compounds in human health and disease”, J. Breath Research 6, 1-21, doi: 10.1088/1752-7155/6/2/027108 (2012).

[8] J. H. Shorter, D.D. Nelson, J.B. McManus, M.S. Zahniser, S.R. Sama, and D.K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy”, J. Breath Research 5, 1-12, doi: 10.1088/1752-7155/5/3/037108 (2011).

[9] W. Miekisch, J.K. Schubert, and G.F. Noeldge-Schomburg, “Diagnostic potential of breath analysis-focus on volatile organic compounds”, Clinica Chimica Acta 347, 25-39, doi: 10.1016/j.cccn.2004.04.023 (2004).

[10] C.D.R. Dunn, M. Black, D.C. Cowell, C. Penault, N.M. Ratcliffe, R. Spence, and C. Teare, “Ammonia vapour in the mouth as a diagnostic marker for Helicobacter pylori infection: pre-liminary ‘proof of principle’ pharmacological investigations”, British J. Biomedical Science 58, 66-75 (2001).

[11] S.S. Sehnert, L. Jiang, J.F. Burdick, and T.H. Risby, “Breath biomarkers for detection of human liver diseases: preliminary study”, Biomarkers 7, 174-187, doi: 10.1080/13547500110118184 (2002).

[12] M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F.K. Tittel, “Recent advances of laser-spectroscopy-based techniques for application in breath analysis”, J. Breath Res. 1, 014001, doi: 10.1088/1752-7155/1/1/014001 (2007).

[13] Ch. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limit”, Sensors 9, 8230-8262, doi: 10.3390/s91008230 (2009).

[14] A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, A. Guenther, G.A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas”, Int. J. Mass Spectrom. 265, 49-59, doi: 10.1016/j.ijms.2007.05.012 (2007).

[15] S.E. Ebeler, A.J. Clifford, and T. Shibamoto, “Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human”, J. Chromatogr. Biomed. Sci. Appl. 702, 211-5, doi: 10.1016/S0378-4347(97)00369-1 (1997).

[16] F. Schmidt, “Laser-based absorption spectrometry, development of nice-ohms towards ultra-sensitive trace species detection”, Doctoral Thesis, Umea University, Umea, 2007.

[17] L.S. Rothman, D. Jacquemart, and A. Barbe, “The HITRAN 2004 molecular spectroscopic database”, J. Quant. Spectrosc. Ra. 96, 139-204, doi: 10.1016/j.jqsrt.2004.10.008 (2005).

[18] W. Demtr¨oder, Laser Spectroscopy. Basic Concepts and Instrumentation, Springer, Berlin, 2003.

[19] M. Bugajski, K. Kosiel, A. Szerling, J. Kubacka-Traczyk, I. Sankowska, P. Karbownik, A. Trajnerowicz, E. Pruszyńska Karbownik, K. Pierściński, and D. Pierścińska, “GaAs/AlGaAs (_9.4 μm) quantum cascade laser operating at 260K”, Bull. Pol. Ac.: Tech. 58 (4), 471-476, doi: 10.2478/v10175-010-0045-z (2010).

[20] G. Berden, R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell, London, 2009.

[21] K.W. Busch and M.A. Busch, Cavity-Ringdown Spectroscopy An Ultratrace-Absorption Measurement Technique, American Chemical Society, New York, 1999.

[22] http://www.chem.ualberta.ca/_xu/research/crds1.jpg

[23] J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Ueunten, D.S. Urevig, D.J. Spencer, and D.J. Benard, “Sensitive measurement of photon lifetime and true reflectances in optical cavity by a phase-shift method”, Applied Optics 19 (1), 144-147, doi: 10.1364/AO.19.000144 (1980).

[24] F.K. Tittel, G. Wysocki, A. Kostrev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and application”, in Mid-infrared Coherent Sources and Applications, eds. M. Ebrahim-Zaden and I.T. Sorokina, pp. 467-493, Springer, Berlin, 2007.

[25] D. Romanini, A.A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy”, Proc. SPIE 3821, 94-104, doi:10.1117/12.364170 (1999).

[26] R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator”, Appl. Phys. B 31 (2), 97-105 (1983).

[27] A. Cygan, D. Lisak, S. Wojtewicz, J. Domysławska, J.T. Hodges, R.S. Trawinski, and R. Ciuryło, “High signal-to-noise ratio laser technique for accurate measurements of spectral line parameters”, Phys. Rev. A 85, 022508, doi: 10.1103/PhysRevA.85.022508 (2012).

[28] J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, and M. Nowakowski, “Ultrasensitive laser spectroscopy for breath analysis”, Opto-Electron. Rev. 20 (1), 26-39 (2012).

[29] Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel,D.A. Yarekha, I. Hvozdara, M. Giovannini, and J. Faist, “Subppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy”, Appl. Phys. B 82, 149-154, doi:10.1007/s00340-005-2058-0 (2006).

[30] http://www.ru.nl/tracegasfacility/tracegas research/spectroscopic/ cavity-enchanced/

[31] M. Murtz, B. Frech, and W. Urban, “High-resolution cavity leak-out obsorption spectroscopy in the 10μm region”, Appl. Phys. B 68, 243-249, doi: 10.1007/s003400050613 (1999).

[32] D. Halmer, G. von Basum, P. Hering, and M. Murtz, “Midinfrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide”, Optics Letters 30 (17), 2314-2316, doi: 10.1364/OL.30.002314 (2005).

[33] T. Starecki, Selected Aspects of Photoacoustic Devices, BTC, Legionowo, 2009, (in Polish).

[34] T. Kuusela and J. Kauppinen, “Photoacoustic gas analysis using interferometric cantilever microphone”, Appl. Spectrosc. Rev. 42, 443, doi: 10.1080/00102200701421755 (2007).

[35] L. Dong, A. Kosterev, D. Thomazy, and F.K. Tittel, “Compact portable QEPAS Multi-gas sensor”, Proc. SPIE 7945, 79450R-1, doi: 10.1117/12.875108 (2011).

[36] A. Kachanov, S. Koulikov, and F.K. Tittel, “Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 lm external cavity quantum cascade laser”, Appl. Phys. B 110, 47-56, doi: 10.1007/s00340-012-5250-z (2013).

[37] M. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F.K. Tittel, “Recent advances of laser-spectroscopy based techniques for applications in breath analysis”, J. Breath Res. 1, doi:10.1088/1752-7155/1/1/014001, 014001 (2007).

[38] Ch. Wang and A. Mbi, “A new acetone detection device using cavity ringdown spectroscopy at 266 nm: evaluation of the instrument performance using acetone sample solutions”, Meas. Sci. Technol. 18, doi:10.1088/0957-0233/18/8/051, 2731-2741 (2007).

[39] T. Pustelny, M. Procek, E. Maciak, A. Stolarczyk, S. Drewniak, M. Urbańczyk, M. Setkiewicz, K. Gut, and Z. Opilski , “Gas sensors based on nanostructures of semiconductors ZnO and TiO”, Bull. Pol. Ac.: Tech. 60 (4), doi: 10.2478/v10175-012-0099-1, 853-860 (2012).

[40] J. Wojtas, T. Stacewicz, Z. Bielecki, B. Rutecka, R. Medrzycki, and J. Mikolajczyk, “Towards optoelectronic detection of explosives”, Opt. Electron. Rev. 21, doi: 10.2478/s11772-013-0082-x, 9-18 (2013).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 134 134 19
PDF Downloads 50 50 11