Stack and draw fabrication of soft glass microstructured fiber optics

Open access

Abstract

A broad review is given of microstructured fiber optics components - light guides, image guides, multicapillary arrays, and photonic crystal fibers - fabricated using the stack-and-draw method from various in-house synthesized oxide soft glasses at the Glass Department of the Institute of Electronic Materials Technology (ITME). The discussion covers fundamental aspects of stack-and-draw technology used at ITME, through design methods, soft glass material issues and parameters, to demonstration of representative examples of fabricated structures and an experimental characterization of their optical properties and results obtained in typical applications. Specifically, demonstrators include microstructured image guides providing resolution of up to 16000 pixels sized up to 20 μm in diameter, and various photonic crystal fibers (PCFs): index-guiding regular lattice air-hole PCFs, hollow core photonic bandgap PCFs, or specialty PCFs like highly birefringent microstructured fibers or highly nonlinear fibers for supercontinuum generation. The presented content is put into context of previous work in the area reported by the group of authors, as well as other research teams.

[1] L. Kociszewski. J. Buzniak. R Sleplen. and R. Romaniuk. “High quality tmage-guide by mosaic-assembling optical nber technology". Proc. SPIE 906.97-107 (1988).

[2] L. Kocisewskt. R. Sbpien. J. Buzniak. E Ponmska. and R. Romaniuk. “Basic properties and applications ot advanced glass optical titers'. fTUE Viorts 39. CD-ROM (1993).

[3]T. Tsumanuma. T. Tanaka. K. Seto. K. Sanada. and K Inada. “New ultrathin nxdle scope used tor diagnosis ot small parts", Proc. SPIE 1067. 182-185 (1989).

[4]L. Kociszewski. D. Pysz. and R Stepieri. “Technological as- pects ot nber optic integrated structures manutacturing''. Proc. SPIE 3189. 22-26 (1997).

[5]D. Pysz. L Kociszewski. and R Stepieri. “Technological as- pects ol nber optic image guides for rcedle endoscopes man- uractunng". Proc. SPIE 4158. 137-143 (2000).

[6]E Sllvestre. M.V. Andres, and P. Andres. “Blorthonormal- basis method tor th> wctor description ot optical-nber modes". J. Ughnttve Techn. 16 (5). 923-928 (1998).

[7]A. Ferrando. E. Sllvestre. J.J. MtreL P. Andres, and M.V. An- dres. "Full vector analysts ot a realistic photonic crystal nber modes'. Op,. Leu. 24 (5) 276-278. (1999).

[8]A. Ferrando. E. Sllvestre. J.J. MtreL P. Andres, and M.V. An- dres. “Vector description of hlgter-order modes In photonic crystal nbers". J. Op,. Soc. Am A 17 (7). 1333-1339 (2000).

|9]R. Buczynskl. "Photonic crystal nbers".Acta Physica Monica A 106 (2). 141-168 (2004).

[10]S. Ertman. T. R Wotinski. D. Py.«. R. Buczynskl. E. Nowi- navskt-Kruzelnickt. and R Dabrowskl. “Low-loss propaga- tlon and continuously tunable biremn^nce In high-lndex pho- tonic crystal nbers tilled with nematic liquid crystals". Opt. Express 17. 19298-19310 (2009).

[11]T. LI, Optical Fiber Communications: Fiber Fabrication. Aca- demic Press. New York. 1997.

[12] P.M Klanchard. J.G. BenvtL G.R.G. Erry. All. Geenaway. P. Harrison. B. Mangan. J.C. Knight. P.S. Russell. MJ. Gan- der. R. McBride, and J.D.C. Jones. “Two-dimensional bend sensing with a single multlcore optical nber". Smart Matvr Struct. 9. 132-140 (2000).

[13]R. Buczynskl. P. Szamiak. D. Pysz. 1. Kujawa. R. Sleplen. and T. Szoplik. "Doubb-coc photonic crystal nter with square lattice". Proc. SPIE 5450. 81-89 (2004).

[14]MJ. Steel and R.M Osgood. Jr.. "ElUptlcal-bob photonic crys- tal nbers". Opt. Leu. 26 (4). 229-231 (2001).

[15]R. Buczytiski. P. Szamiak. D. Pysz. R Stepbn. and T. Szop- ltk. ‘‘Highly biretnngent photonic crystal nbres with a square lattice". Proc. SPIE 5576. 92-97 (2004).

[16]P. Szamiak. R Buczytiski. D. Pysz. I. Kujawa. M 1‘ranczyk. and R. Stepieri. “Highly biretnngent photonic crystal nbers with elliptical hobs". Photonic Crysalsand Fibers: SPIE Ini. Confess on Optics and Optoelectronics 5950-58. CD-ROM (2005).

[17]R Buczynskl. D. Pysz. T. Ritari. P. Szamiak. H. Ludvigsen. and R. Stepten. "Optical properties ot photonic band gap nters made or silicate glass". Proc. SPIE 6182. 6I821Z (2006).

[18]D. Pysz. L Kujawa. R. Buczynskl. A. FWpkowskt. T. Mar- tynkten. F. Berghmans. H. Thienpont. and R. Stephen. “Pho- tonic hand gap nber with air dual core". 3rd Conf Inte gated Optics - Sensors. Sensing Strictures and Methods 1. CD-ROM (2009).

[19]I. Kujawa. R. Buczynskl. D. Pysz. T. Martynkien. T. Nasilavs- ki. H. Thtnpont and R. Stepfcen. “Silicate all-solid photonic crystal nters with a glass high index contrast". Pwc. SPIE 6588. 65880J (2007).

[20] D. Pysz. R. Buczynskl. P. Szamiak. W.M SaJ. I. Kujawa. and R. Stepten. “Properties ot photonic crystal nter with dou- ble lattice ot microholes and mtcrorods". Optical Fibers I: Technology: SPIE Int. Confess on Optics and Optoelectronics 5951-05. CD-ROM (2005).

[21] R.R. Alfano and S.L. Shapiro, “Emission in the region 4000 to 7000 ˚A via four-photon coupling in glass”, Phys. Rev. Lett. 24, 584-587 (1970).

[22]J- M. Dudley. G. Genty. and S. Coen. "Supercontlnuum gener- ation in photonic crystal nber". Rev. Mod. Phys. 78 (4). 1135-1184(2006).

[23]P Domachuk. N.A. Wolchwer. M Cronln-Golomb. A. Wang. A.K. George. C..V1.B. Cordelro. J.C. Knight, and F.G Omenet- to. “Over 4000 nm handw idth of mld-lR supercontlnuum gen- eration in sub-centimeter segments of highly nonlinear tellurite PCFs”. Opt Express 16 (10). 7161-7168 (2008).

[24]O. Mouawad. J. Picot-Oemente. E Amranl. C. Strutynskl. J. F;atome. B. Ktbter. F. Dtfsevedavy. G. Gadret. J.-C. Jules. D. Deng. Y. Ohishi. and F. Smektala. “Multioct*e midin- nared supercontlnuum generation in suspended-core chalco-3? rude nbers". Opt. Leu 39 (9). 2684-2687 (2014).

[25]A.M. Ifcidt J.H.V. Price. C. Basktotts. J.S. Feehan. Z. LI. S.U. Alam. and DJ. Richardson. “Mid-intrared ZB1.AN nber supercontlnuum source using picosecond diode-pumptng at 2 pm". Opt Express 21 (20). 24281-24287 (2013).

[26]M. Klimczak. G. Stepntewski. II Bookey. A. Szolno. R. Stepi- en. D. Pysz. A. Kar. A. Waddle. MR. Taghuafch. and R. Buczynskl. ‘Broadband infrared supercontlnuum genera- tion in hexagonal-lattice tellurite photonic crystal nter with dispersion optimized tor pumping rear 1560 nm". Opt Lea. 38 (22). 4679-4682 (2013).

[27]M. Klimczak. B. Stwickt. P. Skibfnski. D. Py.«. R. Stept- en. A Szolno. J. Pntwski. C. Rafeewicz. and R. Buczyns- kt. "Mid-mtratEd supercontlnuum generation in sott-glass sus- pended cote photonic crystal nber". Opical and Quantum Electronics 46 (4). 563-571 (2014).

[28]G. Sobon. M. Klimczak. J. Sotor. K. Krzempek. D. Pysz. R. Stepten. T. Martynkten. K. M. Abramskt. and R. Buczyns- kt. “Infrared supercontlnuum generation in sott-glass photonic crystal nters pumped at 1560 nm". Optical Materials Express 4(1). 7-15 (2014).

[29]A. M Iteidt A. Ilartung. G.W. Bosman. P. Krok. FIG. Rohwer. 11 Schwoerer. and H. Bartelt. "Coherent octaw spanning rear- innared and visible supercontlnuum generation In all-normal dispersion photonic crystal nbers". Opt Express 19 (4). 3775-3787 (201IX

[30]T. Martynkten. D. Pysz. R. Stepieri. and R. Buczynskl. "All- solid mlcrastruetuied nber with flat normal chromatic disper- sion". Op. Lea. 39 (8). 2342-2345 (2014).

[31]G. Stepniewskt. M Klimczak. II Bookey. B. Stwickt. D. Pysz. R. Stepien. A.K Kar. A.J. Waddle. MR. Taghtzaieh, and R. Buczynskl. ‘Broadband supercontlnuum generation in nor- mal dispersion all-solid photonic crystal nber pumped near 1300 nm". loser Physics Utters 11 (5). 055103 (2014).

[32] M. Murawskl. G Stfpnfcwski. T. Tenderenda. M Napter- ala. Z. Hotdyriski. L. Szostkiewicz. M Slow ikov ski. M. Szy- manski. 1_ Ostrwvskt. 1_R. Jaroszewicz. R. Buczynskl. and X Nasilowski. “Lctv loss coupling and splicing ot standard sin- gle mode nbers with all-solid soft-glass microstructured nbers for supercontlnuum generation". Proc. SPIE 8982. 898228-1 (2014).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 227 227 50
PDF Downloads 146 146 31