Design of a nanoswitch in 130 nm CMOS technology for 2.4 GHz wireless terminals

Open access


This paper proposes a transmit/receive (T/R) nanoswitch in 130 nm CMOS technology for 2.4 GHz ISM band transceivers. It exhibits 1.03-dB insertion loss, 27.57-dB isolation and a power handling capacity (P1 dB) of 36.2-dBm. It dissipates only 6.87 μW power for 1.8/0 V control voltages and is capable of switching in 416.61 ps. Besides insertion loss and isolation of the nanoswitch is found to vary by 0.1 dB and 0.9 dB, respectively for a temperature change of 125°C. Only the transistor W/L optimization and resistive body floating technique is used for such lucrative performances. Besides absence of bulky inductors and capacitors in the schematic circuit help to attain the smallest chip area of 0.0071 mm2 which is the lowest ever reported in this frequency band. Therefore, simplicity and low chip area of the circuit trim down the cost of fabrication without compromising the performance issue.

[1] H. Elwan, A. Tekin, and K. Pedrotti, “A differential-ramp based 65 dB-linear VGA technique in 65 nm CMOS”, IEEE J. Solid- State Circuits 44 (9), 2503-2514 (2009).

[2] I. Jones, L. Ricciardi, L. Hall, H. Hansen, V. Varadan, C. Bertram, S. Maddocks, S. Enderling, D. Saint, S.A. Sawari, and D. Abbott, “Wireless RF communication in biomedical applications”, Smart Materials and Structures 17, 1-10 (2008).

[3] M.J. Uddin, M.I. Ibrahimy, M.B.I. Reaz, and A.N. Nordin, “Design and application of radio frequency identification systems”, Eur. J. Scientific Research 33 (3), 438-453 (2009).

[4] W.M. Kader, H. Rashid, M. Mamun, and M.A.S. Bhuiyan, “Advancement of CMOS Schmitt trigger circuits”, Modern Applied Science 6 (12), 51-58 (2012).

[5] A.A. Abidi, “RF CMOS comes of age”, IEEE J. Solid-State Circuits 39 (4), 549-561 (2004).

[6] M.J. Uddin, A.N. Nordin, M.B.I. Reaz, and M.A.S. Bhuiyan, “A CMOS power splitter for 2.45 GHz ISM band RFID reader in 0.18 μm CMOS technology”, Technical Gazette 20 (1), 125-129 (2013).

[7] X.J. Li and Y.P. Zhang, “Flipping the CMOS switch”, IEEE Microwave Magazine 11 (1), 86-96 (2010).

[8] K. Yamamoto, K. Heima, A. Furukawa, M. Ono, Y. Hashizume, H. Komurasaki, S. Maeda, H. Sato, and N. Kato, “A 2.4-GHz-band 1.8-V operation single-chip Si-CMOS T/R-MMIC front-end with a low insertion loss switch”, IEEE J. Solid-State Circuits 36 (8), 1186-1197 (2001).

[9] F.J. Huang, “A 2.4-GHz single-pole double-throw T/R switch with 0.8-dB insertion loss implemented in a CMOS process”, Proc. 27th Eur. Solid-State Circuits Conf. (ESSCIRC) 1, 417-420 (2001).

[10] F.J. Huang, “Single-pole double-throw CMOS switches for 900-MHz and 2.4-GHz applications on p-silicon substrates”, IEEE J. Solid-State Circuits 39 (1), 35-41 (2004).

[11] C. Hove, J.L. Faaborg, M.B. Jenner, and S. Lindfors, “0.35 μm CMOS T/R Switch for 2.4 GHz Short Range Wireless Applications”, Analog Integrated Circuits and Signal Processing 38 (1), 35-42 (2004).

[12] M.C. Yeh, Z.M. Tsai, R.C. Liu, K.Y. Lin, Y.T. Chang, and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance”, IEEE Trans. on Microwave Theory and Techniques 54 (1), 31-39 (2006).

[13] C. Tinella, J.M. Fournier, D. Belot, and V. Knopik, “A highperformance CMOS-SOI antenna switch for the 2.5-5-GHz band”, IEEE J. Solid-State Circuits 38 (7), 1279-1283 (2003).

[14] Y.H. Lin, C.H. Chu, D.C. Chang, J. Gong, and Y.Z. Juang, “A 900-MHz 30-dbm bulk Cmos transmit/receive switch using stacking architecture, high substrate isolation and RF floated body”, Progress in Electromagnetics Research C 11, 91-107 (2009).

[15] Y.P. Zhang, Q. Li, W. Fan, C.H. Ang, and H. Li, “A differential CMOS T/R switch for multistandard applications”, IEEE Trans.on Circuits and Systems II: Express Briefs 53 (8), 782-786 (2006).

[16] P. Mekanand, P. Prawatrungruang, and D. Eungdamrong, “0.5 μ CMOS 2.4 GHz RF-switch for wireless communications”, Proc. 10th Int. Conf. on Advanced Communication Technology (ICACT) 1, 447-450 (2008).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 11
PDF Downloads 9 9 5