A new hybrid (hydro-numerical) model of the circulatory system

Open access

Abstract

The paper presents a hybrid (hydro-numerical) circulatory model built to be used as a complementary tool for clinical purposes. It was developed at the Institute of Biocybernetics and Biomedical Engineering - Polish Academy of Sciences (Poland) in co-operation with the Institute of Clinical Physiology - National Council of Research (Italy). Main advantages of the model are: 1) high accuracy and repeatability of parameters setting, characteristic of numerical solutions, 2) maximum flexibility achieved by implementing the largest possible number of the model’s elements in the numerical way, 3) ability to test mechanical heart assist devices provided by special computer applications; in the model two physically different signal environments - numerical and hydraulic - are connected by special impedance transformers interfacing physical and numerical parts of the model; 4) eliminating flowmeters, as the voltage controlled flow sources embedded in the system provide information on flows.

In vitro tests were performed to evaluate the circulatory model: a) modelling and simulation of physiological and pathological states parameters vs. left ventricular end-systolic elastance (Emax l) and rest volume (Vol) variations, b) testing the effect of LVAD counterpulsation on circulatory hemodynamics and ventricular energetics; it resulted in the increase of total cardiac output (COLV tot) from pathological value 3.8 to 5.4 l·min−1, mean aortic pressure mPas from 67.8 to 96.1 mmHg and in the decrease of left atrial pressure mPla from 15.7 to 7.7 mmHg and External Work nEW by 37.5%. The model was verified based on literature data.

[1] G. Ferrari, K. Gorczyńska, C. De Lazzari, M. Englisz, G. Tosti, D.Ambrosi, R. Mimmo, and F. Clemente, “Evaluation of influence of lvad assistance on haemodynamics and ventricular energetics in closed-loop mock circulatory system”, Biocybernetics and Biomedical Engineering 18 (1-2), 19-34 (1998).

[2] G. Ferrari, K. Gorczyńska, R. Mimmo, C. De Lazzari, F. Clemente, G. Tosti, and M. Guaragno, “Mono and biventricular assistance: their effect on ventricular energetics”, Int. J. Artif. Organs 24 (6), 380-91 (2001).

[3] M. Kozarski, G. Ferrari, F. Clemente, K. Gorczyńska, C. De Lazzari, M. Darowski, R. Mimmo, G. Tosti, and M. Guadagno, “A hybrid mock circulatory system: development and testing of an electro-hydraulic impedance simulator”, Int. J. Artif. Organs 26 (1), 53-63 (2003).

[4] G. Ferrari,M. Kozarski, C. De Lazzari and F. Clemente, “A hybrid (numerical - physical) model of the left ventricle”, Int. J. Artif. Organs 24 (7), 456-462 (2001).

[5] C. De Lazzari , M. Kozarski, F. Clemente, K. Gorczyńska, R. Mimmo, E. Monnanni, G. Tosti, and M. Guaragno, “A hybrid mock circulatory system: testing a prototype under physical and pathological conditions”, ASAIO J 48 (5), 487-494 (2002).

[6] K. Gorczyńska, M. Darowski, and M. Kozarski, “Cardiovascular, respiratory and veno-lymphatic assistance. Modelling and simulation”, Biocybernetics and Biomedical Engineering 22 (2-3), 135-175 (2002).

[7] G. Ferrari, C. De Lazzari, M. Kozarski, F. Clemente, K. Gorczyńska, M. Darowski, and G. Tosti, “Physical modelling of the circulatory system: development of a new simulation system based on hybrid (numerical-hydraulic) components”, Biocybernetics and Biomedical Engineering 23 (2), 3-15 (2003).

[8] M. Kozarski, G. Ferrari, M. Darowski, K. Gorczyńska, F.Clemente, and K.J. Pałko, “The electrohydraulic impedance converter in mock circulatory system design”, Biocybernetics and Biomedical Engineering 23 (2), 27-34 (2003).

[9] G. Ferrari, M. Kozarski, C.De Lazzari, K. Gorczyńska, M. Darowski and G. Tosti, “Development hybrid (numericalphysical) models of the cardiovascular system: numericalelectrical and numerical-hydraulic applications”, Biocybernetics and Biomedical Engineering 25 (4), 3-15 (2005).

[10] K.W. Gwak, B.E. Paden, D. Noh, and J.F. Antaki, “Fluid operational amplifier for mock circulatory systems”, IEEE Trans. on Control Systems Technology 14 (4), 602-612 (2006).

[11] F.M. Colacino, M. Arabia, G.A. Danieli, F. Moscato, S. Nicosia, F. Piedimonte, P. Valigi, and S. Pagnottelli, “Hybrid test bench for evaluation of any device related to mechanical cardiac assistance”, Int. J. Artif. Organs 28 (8), 817-826 (2005).

[12] K.W. Gwak, B.E. Paden, J.F. Antaki, and I.S. Ahn, “Experimental verification of the feasibility of the cardiovascular impedance simulator”, IEEE Trans. Biomed. Eng. 57 (5), 1176-1183 (2010).

[13] F.M. Colacino, M. Arabia, F. Moscato, and G.A. Danieli, “Modeling, analysis, and validation of a pneumatically driven left ventricle for use in mock circulatory systems”, Med. Eng. Phys. 29 (6), 828-839 (2007).

[14] M. Kozarski, G. Ferrari, K. Zieliński, K. Gorczyńska, K.J. Pałko, A. Tokarz, and M. Darowski, “A new hybrid electro-numerical model of the left ventricle”, Computers in Biology and Medicine 38 (9), 979-989, (2008).

[15] M. Kozarski, G. Ferrari, K. Zieliński, K. Gorczyńska, K.J. Pałko, A. Tokarz, and M. Darowski, “Open loop hybrid circulatory model: the effect of the arterial lumped parameter loading structure on selected ventricular and circulatory variables”, Biocybernetics and Biomedical Engineering 28 (1), 17-27 (2008).

[16] K. Sagawa, L. Maughan, H. Suga, and K. Sunagawa, Cardiac Contraction and the Pressure - Volume Relationship, Oxford University Press, New York, 1988.

[17] C.H. Chen, B. Fetics, E. Nevo, C.E. Rochitte, K.R. Chiou, P.A.

Ding, M. Kawaguchi and D.A. Kass, “Noninvasive single-beat determination of left ventricular end-systolic elastance in humans”, J. Am Coll Cardiol 38 (7), 2028-2034 (2001).

[18] T. Schlosser, K. Pagonidis, C.U. Herborn, P. Hunold, K.U.Waltering, and T.C. Lauenstein, and J. Barkhausen, “Assessment of left ventricular parameters using 16-mdct results”, Am. J. Roentgenol 184 (3), 765-773 (2005).

[19] Normal Hemodynamic Parameters and Laboratory Values, Edwards Lifesciences Corp., http://ht.edwards.com/scin/edwards/sitecollectionimages/edwards/products/presep/ar05688 parameters.pdf (2011).

[20] H. Suga, “Cardiac energetics: from Emax to pressure - volume area”, Clin Exp Pharmacol Physiol. 30 (8), 580-585 (2003).

[21] C.V. Greenway and W.W. Lautt, “Blood volume, the venous system, preload, and cardiac output”, Can. J. Physiol. Pharmacol. 64 (4), 383-387 (1986).

[22] M. Sato, S. Hoka, H. Arimura, K. Ono, and J. Yoshitake, “Effects of augmenting cardiac contractility, preload, and heart rate on cardiac output during enflurane”, Anesth. Analg. 73, 590-596 (1991).

[23] J.A. Brinkler, J.L. Weiss, D.L. Lapp´e, J.L. Rabson, W.R. Summer, S. Permutt, and M.L. Weisfeldt, “Leftward septal displacement during right ventricular loading in man”, Circulation 61 (3), 626-633 (1980).

[24] A.A. Bove andW.P. Santamore, “Ventricular interdependence”, Prog. Cardiovasc Dis 23, 365-388 (1981).

[25] K. Fukamachi, T. Asou, Y. Nakamura, Y. Toshima, M. Oe, A. Mitani, M. Sakamoto, K. Kishizaki, K. Sunagawa, and K.Tokunaga, “Effects of left heart bypass on right ventricular performance. Evaluation of the right ventricular end-systolic and end-diastolic pressure - volume relationship in the in situ normal canine heart, J. Thorac Cardiovasc Surg. 99, 725-734 (1990).

[26] S. Nakatani, J.D. Thomas, R.M. Savage, R.L. Vargo, N.G. Smedira, and P.M. McCarthy, “Prediction of right ventricular dysfunction after left ventricular assist device implantation”, Circulation 94 (Suppl. 9), II-216-221 (1996).

[27] S. Morita, R.L. Kormos, W.A. Mandarino, K. Eishi, A. Kawai, T.A. Gasior, L.G. Deneault, J.M. Armitage, R.L. Hardesty, and B.P.Griffith, “Right ventricular/ arterial coupling in the patient with left ventricular assistance”, Circulation 86, 316-25 (1992).

[28] N.G. Smedira, N.G. Massad, J. Navia, R.L. Vargo, A.N. Patel, D.J. Cook, and P.M. McCarthy, “Pulmonary hypertension is not a risk factor for RVAD use and death after left ventricular assist system support”, ASAIO J. 42 (5), M733-735 (1996).

[29] Y. Miyamoto, R.L. Kormos, Borovetz, T. Gaisor, J.M. Pristas, J.M. Armitage, R.L. Hardesty, and B.P. Griffith., “Hemodynamic parameters influencing clinical performance of Novacor left ventricular assist system, Int. J. Artif Organs 14 (6), 454-57 (1990).

[30] S. Garcia, F. Kandar, A. Boyle, M. Colvin-Adams, K. Lliao, L. Joyce, and R. John, “Effect of pulsatile and continuousflow left ventricular assistance on left ventricular unloading”, J. Heart Lung Transplant 27 (3), 261-67 (2008).

[31] L. Fresiello, A.W. Khir, A. Di Molfetta, M. Kozarski, and G. Ferrari, “Effects of intra-aortic balloon pump timing on baroreflex activities in a closed-loop cardiovascular hybrid model”, Artif. Organs 37 (3), 237-247 (2013).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 26
PDF Downloads 11 11 3