Extraordinary optical transmission and vortex excitation by periodic arrays of Fresnel zone plates

Open access

Abstract

Extraordinary optical transmission and good focusing properties of a two-dimensional scattering structure is presented. The structure is made of Fresnel zone plates periodically arranged along two orthogonal directions. Each plate consists of two ring-shaped waveguides supporting modes that match the symmetry of a circularly polarized incident plane wave. High field concentration at the focal plane is obtained with the short transverse and long longitudinal foci diameters. Optical vortex excitation in a paraxial region of the transmitted field is also observed and analysed in terms of cross-polarisation coupling. The structure presented may appear useful in visualization, trapping and precise manipulations of nanoparticles.

[1] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays”, Nature 391, 667-669 (1998).

[2] S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane”, Phys. Rev. Lett. 104, 027401-1-4 (2010).

[3] A.T.M.A. Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood-Rayleigh anomaly and the Fabry-Perot resonance”, Opt. Lett. 37, 1742-4 (2012).

[4] A. Roszkiewicz and W. Nasalski, “Resonant transmission enhancement at one-dimensional metal gratings”, J. Phys. B: At. Mol. Opt. Phys. 46, 025401-1-6 (2013).

[5] D. van Labeke, D. Gerard, B. Guizal, F.I. Baida, and L. Li, “An angle-independent frequency selective surface in the optical range”, Opt. Express 14, 11945-51 (2006).

[6] Y. Ekinci, H.H. Solak, and C. David, “Extraordinary optical transmission in the ultraviolet region through aluminum hole arrays”, Opt. Lett. 32, 172-4 (2007).

[7] P.B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films”, Phys. Rev. B 75, 075422-1-5 (2007).

[8] P.B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry”, Appl. Phys. Lett. 94, 231111-1-3 (2009).

[9] J-S. Bouillard, J. Einsle, W. Dickson, S.G. Rodrigo, S. Carretero-Palacios, L. Martin-Moreno, F.J. Garcia-Vidal, and A.V. Zayats, “Optical transmission of periodic annular apertures in metal film on high-refractive index substrate: the role of the nanopillar shape”, Appl. Phys. Lett. 96, 201101-1-4 (2010).

[10] X. Wang, W. Xiong, W. Sun, and Y. Zhang, “Coaxial waveguide mode reconstruction and analysis with THz digital holography”, Opt. Express 20, 7706-15 (2012).

[11] F.I. Baida and D. van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films”, Optics Commun. 209, 17-22 (2002).

[12] F.I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands” Appl. Phys. B 79, 1-8 (2004).

[13] J. Wang and W. Zhou, “An annular plasmonic lens under illumination of circularly polarized light”, Plasmonics 4, 231-235 (2009).

[14] A. Roberts, “Beam transmission through hole arrays”, Opt. Express 18, 2528-33 (2010).

[15] P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film”, Opt. Express 18, 10896-904 (2010).

[16] M. Padgett and L. Allen, “Light with a twist in its tail”, Contemporary Physics 41, 275-285 (2000).

[17] M.W. Beijerrsbergen, L. Allen, H.E.L.O. Van der Veen, and J.P. Woerdman, “Astigmatic laser mode convertes and transfer of orbital angular momentum”, Opt. Commun. 96, 123-132 (1993).

[18] M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters”, Opt. Letters 21, 1948-51 (1996).

[19] M.A.A. Neil, T. Wilson, and R. Juˇskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering”, J. Microsc. 197, 219-233 (2000).

[20] L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications”, J. Opt. 13, 064001-1-13 (2011).

[21] Z. Zhao, J. Wang, S. Li, and A.E. Willner, “Metamaterialsbased broadband generation of orbital angular momentum carrying vector beams”, Opt. Letters 38, 932-4 (2013).

[22] W. Nasalski, “Polarization versus spatial characteristics of optical beams at a planar isotropic interface”, Phys. Rev. E 74, 056613-1-16 (2006).

[23] W. Nasalski, “Cross-polarized normal mode patterns at a dielectric interface”, Bull. Pol. Ac. Tech. 58, 141-154 (2010).

[24] W. Szabelak and W. Nasalski, “Cross-polarization coupling and switching in an open nano-meta-resonator”, J. Phys. B: At. Mol. Opt. Phys. 44, 215403-1-10 (2011).

[25] Y. Guo and S.K. Barton, Fresnel Zone Antennas, Kluwer Academic Publishers, Dordrecht, 2002.

[26] M.G. Moharam, E.B. Grann, D.A. Pommet, and T.K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings”, J. Opt. Soc. Am. A 12, 1068-76 (1995).

[27] H. Kim and B. Lee, “Pseudo-Fourier modal analysis of twodimensional arbitrarily shaped grating structures”, J. Opt. Soc. Am. A 25, 40-54 (2008).

[28] L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings”, J Opt. Soc. Am. A 13, 1024-35 (1996).

[29] L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures”, J. Opt. Soc. Am. A 13, 1870-1876 (1996).

[30] G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization”, J. Opt. Soc. Am. A 13, 1019-23 (1996).

[31] P. Lalanne and G.M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization”, J. Opt. Soc. Am. A 13, 779-84 (1996).

[32] Y. Fu, W. Zhou, L.E.N. Lim, C.L. Du, and X.G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime”, Appl. Phys. Lett. 91, 061124-1-3 (2007).

[33] S.G. Rodrigo, Optical Properties of Nanostructured Metallic Systems, Springer Theses, Springer-Verlag, Berlin, 2012.

[34] F.I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode”, Appl. Phys. B 89, 145-149 (2007).

[35] N. Marcuvitz, Waveguide Handbook, Academic Press, New York, 1965.

[36] B. Johnson and R.W. Christy, “Optical constants of the noble metals”, Phys. Rev. B 6, 4370-4379 (1972).

[37] P. Yech, Optical Waves in Layered Media, Wiley, New York, 1976.

[38] A. Roszkiewicz and W. Nasalski, ”Unidirectional SPP excitation at asymmetrical two-layered metal gratings“, J. Phys. B: At. Mol. Opt. Phys. 43, 185401-1-8 (2010).

[39] K. Kempa and A. Rose, “Negative refraction of photonic and polaritonic waves in periodic structures”, Bull. Pol. Ac. Tech. 57, 35-38 (2009). Bull.

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 151 13
PDF Downloads 42 41 6