Unscented and extended Kalman filters study for sensorless control of PM synchronous motors with load torque estimation

Open access

Abstract

This paper describes a study and the experimental verification of sensorless control of permanent magnet synchronous motors using Kalman filters. There are proposed two structures, extended and unscented Kalman filters, which use only the measurement of the motor current for on-line estimation of speed, rotor position and load torque reconstruction. The Kalman filter is an optimal state estimator and is usually applied to a dynamic system that involves a random noise environment. These structures are described in detail, starting with the selection of the variables state vector, the filters structure, and ending with in-depth laboratory tests. It has become possible, without using position and torque sensors, to apply these control structures as a cost-effective solution. Experimental results confirm the validity of the proposed estimation techniques.

[1] S. Brock and K. Zawirski, “New approaches to selected problems of precise speed and position control of drives”, Proc. IECON 2012 - 38th Annual Conf. IEEE Industrial Electronics Society 1, 6291-6296 (2012).

[2] M. Comanescu, “Rotor position estimation of pmsm by sliding mode emf observer under improper speed”, Industrial Electronics (ISIE), 2010 IEEE Int. Symp. 1, 1474-1478 (2010).

[3] C. De Angelo, G. Bossio, J. Solsona, G. Garcia, and M. Valla, “Mechanical sensorless speed control of permanent-magnet ac motors driving an unknown load”, Industrial Electronics, IEEE Trans. 53 (2), 406-414 (2006).

[4] R. Dhaouadi, N. Mohan, and L. Norum, “Design and implementation of an extended kalman filter for the state estimation of a permanent magnet synchronous motor”, Power Electronics, IEEE Trans. 6 (3), 491-497 (1991).

[5] L. Grzesiak and M. Kazmierkowski, “Improving flux and speed estimators for sensorless ac drives”, Industrial Electronics Magazine, IEEE 1 (3), 8-19, 2007.

[6] D. Janiszewski, “Load torque estimation in sensorless pmsm drive using unscented kalmana filter”, Industrial Electronics (ISIE), 2011 IEEE Int. Symp. 1, 643-648 (2011).

[7] D. Janiszewski, “Unscented Kalman filter for sensorless pmsm drive with output filter fed by PWM converter”, Proc. IECON 2012 - 38th Annual Conf. IEEE Industrial Electronics Society 1, 4660-4665 (2012).

[8] D. Janiszewski, “Load torque estimation for sensorless pmsm drive with output filter fed by pwm converter”, Proc. IECON 2013 - 39th Annual Conf. IEEE Industrial Electronics Society 1, 1-6 (2013).

[9] S.J. Julier and J.K. Uhlmann, “A new extension of the kalman filter to nonlinear systems”, Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, Proc. 3, 12 (1997).

[10] S.J. Julier and J.K. Uhlmann, “Unscented filtering and nonlinear estimation”, Proce. IEEE 92 (3), 401-422 (2004).

[11] T. Kaczorek, “Practical stability of positive fractional discretetime linear systems”, Bull. Pol. Ac:. Tech. 56 (4), 313-317 (2008).

[12] R.E. Kalman, “A new approach to linear filtering and prediction problems”, Trans. ASME - J. Basic Engineering D 82, 35-45 (1960).

[13] M. Kazmierkowski, L. Franquelo, J. Rodriguez, M. Perez, and J. Leon, “High-performance motor drives”, Industrial Electronics Magazine, IEEE 5 (3), 6-26 (2011).

[14] M.P. Kazmierkowski and H. Tunia, Automatic Control of Converter-Fed Drives, Elsevier Science & Technology, Amsterdam, 1994.

[15] J. Korbicz, M. Witczak, and V. Puig, “Lmi-based strategies for designing observers and unknown input observers for nonlinear discrete-time systems”, Bull. Pol. Ac:. Tech. 55 (1), 1-42 (2007).

[16] R. Krishnan, J.D. Irwin, M.P. Kazmierkowski, and F. Blaabjerg, Control in Power Electronics: Selected Problems, Academic Press Series in Engineering, New York, 2002.

[17] A. Krolikowski and D. Horla, “Robustness of adaptive discretetime lqg control for first-order systems”, Bull. Pol. Ac:. Tech. 58 (1), 89-97 (2010).

[18] M. Malinowski, M. Kazmierkowski, and A. Trzynadlowski, “A comparative study of control techniques for PWM rectifiers in ac adjustable speed drives”, Power Electronics, IEEE Trans. 18 (6), 1390-1396 (2003).

[19] R. Muszynski and J. Deskur, “Damping of torsional vibrations in high-dynamic industrial drives”, Industrial Electronics, IEEE Trans., 57 (2), 544-552 (2010).

[20] T. Orłowska-Kowalska and M. Dybkowski, “Performance analysis of the sensorless adaptive sliding-mode neuro-fuzzy control of the induction motor drive with mras-type speed estimator”, Bull. Pol. Ac:. Tech. 60 (1), 61-70 (2012).

[21] P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives. i. the permanent-magnet synchronous motor drive”, Industry Applications, IEEE Trans. 25 (2), 265-273 (1989).

[22] Z. Qiao, T. Shi, Y. Wang, Y. Yan, C. Xia, and X. He, “New sliding mode observer for position sensorless control of permanent magnet synchronous motor”, Industrial Electronics, IEEE Trans., PP(99), 1 (2012).

[23] H. Rasmussen, “Sensorless speed control including zero speed of non salient pm synchronous drives”, Bull. Pol. Ac:. Tech. 54 (3), 293-298 (2006).

[24] K. Shi, T. Chan, Y. Wong, and S. Ho, “Speed estimation of an induction motor drive using an optimized extended kalman filter”, Industrial Electronics, IEEE Trans. 49 (1), 124-133 (2002).

[25] D. Simon, “Kalman filtering”, Embeded System Programming 14 (6), 72-79 (2001).

[26] D. Simon, “Using nonlinear kalman filtering to estimate signals”, Embedded Systems Design 19 (7), 38-53 (2006).

[27] K. Szabat and T. Orlowska-Kowalska, “Application of the kalman filters to the high-performance drive system with elastic coupling”, Industrial Electronics, IEEE Trans. 59 (11), 4226-4235 (2012).

[28] K. Szabat, T. Orlowska-Kowalska, and K. Dyrcz, “Extended kalman filters in the control structure of two-mass drive system”, Bull. Pol. Ac:. Tech. 54 (3), 315-325 (2006).

[29] K. Urbanski, “Sensorless control of pmsm high dynamic drive at low speed range”, Proc. IEEE Int Industrial Electronics (ISIE) Symp. 1, 728-732 (2011).

[30] P. Vas, Sensorless Vector and Direct Torque Control, Monographs in Electrical and Electronic Engineering 42, Oxford University Press, Oxford, 1998.

[31] G. Zhu, L.-A. Dessaint, O. Akhrif, and A. Kaddouri, “Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer”, Industrial Electronics, IEEE Trans. 47 (2), 346-355 (2000).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 303 298 12
PDF Downloads 211 210 12