Bioactivity of cement type bone substitutes

Open access

Abstract

In vitro chemical stability and bioactivity of three different cement type bone substitutes were determined by incubating cement samples in the simulated body fluid (SBF) for 7 and 28 days. Morphology of sample surfaces has been studied using scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectroscopy (EDS) and by atomic force microscopy (AFM). The diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was applied as a supplementary method. The development of bone-like apatite layers on the surface depended on their initial phase composition. Obtained cements showed good surgical handiness, high bioactive potential and were chemically stable. They seem to be promising materials for bone substitution.

[1] P. Janicki and G. Schmidmaier, “What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells”, Injury 42, 77-81 (2011).

[2] T. Kokubo, “Design of bioactive bone substitutes based on biomineralization process”, Mater Sci. Eng. C 25 (2), 97-104 (2005).

[3] M. Nowak, I. Firkowska, and M. Giersig, “Nanostructured bone-like scaffolds for restoration of trabecular bone remodeling capability”, Bull. Pol. Ac.: Tech. 59 (1), 57-61 (2011).

[4] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials 27 (15), 2907-2915 (2006).

[5] T. Kokubo, S. Ito, M. Shigematsu, S. Sakka, and T. Yamamuro, “Fatigue and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite”, J. Mater. Sci. 22 (11), 4067-4070 (1987).

[6] L.L. Hench and E.C. Ethridge, Biomaterials: An InterfacialApproach, Academic Press, New York, 1982.

[7] N.A.F. Almeida and M.H.V. Fernandes, “Effect of glass ceramic crystallinity on the formation of simulated apatite layers”, Mater. Sci. Forum 514-516, 1039-1043 (2006).

[8] M. Kamitakahara, “Novel Bone-Repairing Materials: Bioactive Organic-Inorganic Hybrids”, in: Ceramics and Composite Materials:New Research, ed. B.M. Caruta, Nova Science, New York, 2006.

[9] T. Kokubo, S. Ito, Z. Huang, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, “Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W”, J. Biomed. Mater. Res. 24, 331-343 (1987).

[10] T. Kokubo, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, “Bonding between bioactive glasses, glass-ceramics or ceramics in a simulated body fluid”, Yogyo-Kyokai-Shi 95, 785-791 (1987).

[11] S.V. Dorozhkin, “Calcium orthophosphate”, J. Mater. Sci. 42 (4), 1061-1095 (2007).

[12] H. Liu and T.J. Webster, “Bioinspired Nanocomposites for Orthopedic Applications”, in: Nanotechnology for the Regenerationof Hard and Soft Tissues, ed. T.J.Webster,World Scientific Publishing Co., Singapore, 2007.

[13] B. McKay, S. Peckham, and J. Scifert, “Biologics to promote spinal fusion”, in: Spine Technology Handbook, eds. S.M. Kurtz, A.A. Edidin, Elsevier Academic Press, Boston, 2006.

[14] E. Boanini, M. Gazzano, and A. Bigi, “Ionic substitutions in calcium phosphates synthesized at low temperature”, Acta Biomater. 6 (6), 1882-1894 (2010).

[15] C. Knabe, A. Houshmand, G. Berger, P. Ducheyne, R. Gildenhaar, I. Kranz, and M. Stiller, “Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype in vitro”, J. Biomed. Mater. Res. A 84 (4), 856-868 (2008).

[16] A.K. Garg, “Review of bone-grafting materials”, in: Bone Biology,Harvesting, and Grafting for Dental Implants: Rationaleand Clinical Applications, ed. A.K. Garg, Quintessence Publishing Co., Chicago, 2004.

[17] W. Mroz, A. Bombalska, S. Burdyńska, M. Jedyński, A. Prokopiuk, B. Budner, A. Ślosarczyk, A. Zima, E. Menaszek, A. Ścisłowska-Czarnecka, and K. Niedzielski, “Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture”, J. Mol. Struct. 977 (1-3), 145-152 (2010).

[18] R.Z. LeGeros, R. Kijkowska, C. Bautista, and J.P. LeGeros, “Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites”, Connect Tissue Res. 33 (1-3), 203-209 (1955).

[19] A. Ślosarczyk, A. Zima, Z. Paszkiewicz, J. Szczepaniak, A.H. De Aza, and A. Chrościcka, “The influence of titanium on physicochemical properties of Ti-modified hydroxyapatite materials”, Ceramic Materials 62 (3), 369-375 (2010).

[20] M.P. Ginebra, T. Traykova, and J.A. Planell, “Calcium phosphate cements as bone drug delivery systems: a review”, J. Control Release 113 (2), 102-110 (2006).

[21] M. Bohner, “Physical and chemical aspects of calcium phosphates used in spinal surgery”, Eur. Spine J. 10, 114-121 (2001).

[22] E. Fernandez, F.J. Gil, M.P. Ginebra, F.C.M Driessens, and J.A. Planell, “Production and characterization of new calcium phosphate bone cements in the CaHPO4 − Ca3(PO4)2 system: pH, workability and setting times”, J. Mater. Sci. Mater. Med. 10, 223-230 (1999).

[23] S. Mamidwar, M. Weiner, H. Alexander, and J. Ricci, “In vivo bone response to calcium sulfate/poly L-lactic acid composite”, Implant Dent 17 (2), 208-216 (2008).

[24] H.M. Jung, G.A. Song, Y.K. Lee, J.H. Baek, H.M. Ryoo, G.S. Kim, P.H. Choung, and K.M. Woo, “Modulation of the resorption and osteoconductivity of alpha-calcium sulfate by histone deacetylase inhibitors”, Biomaterials 31 (1), 29-37 (2010).

[25] S.L. Bahn, “Plaster: a bone substitute”, Oral Surg. Oral Med. Oral Pathol. 21 (5), 672-681 (1966).

[26] M.V. Thomas and D.A. Puleo, “Calcium sulfate: Properties and clinical applications”, J. Biomed. Mater. Res. B Appl. Biomater. 88 (2), 597-610 (2009).

[27] N.B. Singh and B. Middendorf, “Calcium sulphate hemihydrate hydration leading to gypsum crystallization”, Prog. Cryst. Growth Charact. Mater. 53 (1), 57-77 (2007).

[28] M. Nilsson, J.S. Wang, L. Wielanek, K.E. Tanner, and L. Lidgren, “Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute”, J. Bone Joint Surg. Br. 86 (1), 120-125 (2004).

[29] D.C. Martin, J.R. Ojeda, J.P. Anderson, and P. Pingali, “Atomic force microscopy of polymer droplets”, in: Atomic ForceMicroscopy/Scanning Tunneling Microscopy, eds. S.H. Cohen, M.T. Bray, M.L. Lightbody, Plenum Press, New York, 1994.

[30] I.B. Leonor, A. Ito, K. Onuma, N. Kanzaki, and R.L. Reis, “In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy”, Biomaterials 24 (4), 579-585 (2003).

[31] A. Zima, Z. Paszkiewicz, D. Siek, J. Czechowska, and A. Ślosarczyk, “Study on the new bone cement based on calcium sulfate and Mg, CO3doped hydroxyapatite”, Ceram Int. 38 (6), 4935-4942 (2012).

[32] J. Czechowska, Z. Paszkiewicz, A. Zima, D. Pijocha, and A. Ślosarczyk, “Influence of heat treatment of titanium-doped hydroxyapatite (TiHA) on properties and in vitro behaviour of calcium sulfate-TiHA composites”, Ceramic Materials 63 (4), 758-764 (2011).

[33] ASTM C266-04, ASTM Annual Book of standards, “Standard test method for time setting of hydraulic-cement paste by gillmore needles”, PA 19428-2959, USA.

[34] M. Topic, T. Ntsoane, and R.B. Heimann, “Microstructural characterisation and stress determination in as-plasma sprayed and incubated bioconductive hydroxyapatite coatings”, Surf. Coat Technol. 201 (6), 3633-3641 (2006).

[35] K. Gomi and J.E. Davies, “Guided bone tissue elaboration by osteogenic cells in vitro”, J. Biomed. Mater. Res. 27 (4), 429-431 (1993).

[36] T. Ballet, L. Boulange, Y. Brechet, F. Bruckert, and M.Weidenhaupt, “Protein conformational changes induced by adsorption onto material surfaces: an important issue for biomedical applications of materials science”, Bull. Pol. Ac.: Tech. 58 (2), 303-315 (2010).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 5
PDF Downloads 17 17 3