Simple speed sensorless DTC-SVM scheme for induction motor drives

Open access

Abstract

The paper focuses on the development of a novel DSP based high performance speed sensorless control scheme for PWM voltage source inverter fed induction motor drives. Firstly, two generic torque and flux control methods the Field Oriented Control (FOC) and Direct Torque Control (DTC), are briefly described. For implementation the sensorless scheme DTC with Space Vector Modulation (DTCSVM) has been selected because it eliminates the disadvantages associated with the DTC while keeping the advantages of both FOC and DTC. Secondly, the simple flux vector observer allowing speed sensor elimination is given. The novelty of the presented system lays in combining the DTC-SVM structure with a simple observer for both torque/flux and speed sensorless control. Furthermore, the DTC-SVM structure which operates in speed sensorless and torque control mode is presented. Finally, the description of a 50 kW laboratory drive and experimental results illustrating properties of the system are given.

[1] I. Boldea and S.A. Nasar, Electric Drives, CRC Press, Boca Raton, 2006.

[2] B.K. Bose, “Power electronics and motor drives recent progress and perspective”, IEEE Trans. on Ind. Electronics 56 (2), 581-588 (2009).

[3] P. Vas, Sensorless Vector and Direct Torque Control, Clarendon Press, Oxford, 1998.

[4] M. Cirrincione, M. Pucci, and G. Vitale, Power Convertersand AC Electrical Drives with Linear Neural Networks, CRC Press, Boca Raton, 2012.

[5] M.P. Kazmierkowski and H. Tunia, Automatic Control of ConverterFed Drives, Elsevier, Amsterdam, 1994.

[6] L. Xu and M. Fu “A sensorless direct torque control technique for permanent magnet synchronous motors”, IEEE IndustrialApplications Conf. 1, 159-164 (1999).

[7] M.P. Kazmierkowski, L.G. Franquelo, J. Rodriguez, M. Perez, and J.I. Leon, “High-performance motor drives”, IEEE IndustrialElectronics Magazine 5 (4), 6-26 (2011).

[8] K. Hasse, “Drehzahlgelverfahren fur schnelle Umkehrantriebe mit stromrichtergespeisten Asynchron - Kurzchlusslaufermotoren”, Reglungstechnik 20, 60-66 (1972).

[9] F. Blaschke, “The principle of field-orientation as applied to the transvector closed-loop control system for rotating-field machines”, Siemens Review 34, 217-220 (1972).

[10] I. Takahashi and T. Noguchi, “A new quick-response and high efficiency control strategy of an induction machine”, IEEETrans. on Industrial Application IA-22 (5), 820-827 (1986).

[11] G.S. Buja and M.P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors - a survey”, IEEE Trans. on Ind. Electronics 51 (4), 744-757 (2004).

[12] J. Holtz, “Sensorless control of induction machines-with or without signal injection?”, IEEE Trans. on Ind. Electron. 53 (1), 7-30 (2006).

[13] D. Casadei, F. Profumo, G. Serra, and A. Tani, “FOC and DTC: two viable schemes for induction motors torque control”, IEEETrans. on Power Electronics 17 (5), 779-787 (2002).

[14] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Controlin Power Electronics, Academic Press, London, 2002.

[15] T. Orłowska-Kowalska, “Application of extended Luenberger observer for flux and rotor time-constant estimation in induction motor drives”, IEE Proceedings 136 (6), 324-330 (1989).

[16] R. Nilsen and M.P. Kazmierkowski, “Reduced order observer with parameter adaption for fast rotor flux estimation in induction machines”, IEE Proc. D 136 (1), 35-43 (1989).

[17] T. Orłowska-Kowalska and M. Dybkowski, “Performance analysis of the sensorless adaptive sliding-mode neuro-fuzzy control of the induction motor drive with MRAS-type speed estimator”, Bull. Pol. Ac.: Tech. 60 (1), 61-70 (2012).

[18] J. Guzinski and H. Abu-Rub, “Speed sensorless induction motor drive with predictive current controller”, IEEE Trans. onIndustrial Electronics 60 (2), 699-709 (2013).

[19] H. Abu-Rub, and J. Guzinski, “Simple observer for induction motor speed sensorless control”, Proc. 37th Annual Conf. IEEE Industrial Electronics Society, IECON 2011 1, 2024-2029 (2011).

[20] dSPACE, RTLib Reference, September 2001.

[21] dSPACE, RTI Reference, September 2001.

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 35
PDF Downloads 18 18 4