Laser nuclear fusion: current status, challenges and prospect

Open access


In 2009, in Lawrence Livermore National Laboratory, USA, National Ignition Facility (NIF) - the largest thermonuclear fusion device ever made was launched. Its main part is a multi-beam laser whose energy in nanosecond pulse exceeds 1MJ (106 J). Its task is to compress DT fuel to the density over a few thousand times higher than that of solid-state DT and heat it to 100 millions of K degrees. In this case, the process of fuel compression and heating is realized in an indirect way - laser radiation (in UV range) is converted in the so-called hohlraum (1 cm cylinder with a spherical DT pellet inside) into very intense soft X radiation symmetrically illuminating DT pellet. For the first time ever, the fusion device’s energetic parameters are sufficient for the achieving the ignition and self-sustained burn of thermonuclear fuel on a scale allowing for the generation of energy far bigger than that delivered to the fuel. The main purpose of the current experimental campaign on NIF is bringing about, within the next two-three years, a controlled thermonuclear ‘big bang’ in which the fusion energy will exceed the energy delivered by the laser at least ten times. The expected ‘big bang’ would be the culmination of fifty years of international efforts aiming at demonstrating both physical and technical feasibility of generating, in a controlled way, the energy from nuclear fusion in inertial confined plasma and would pave the way for practical realization of the laser-driven thermonuclear reactor. This paper briefly reviews the basic current concepts of laser fusion and main problems and challenges facing the research community dealing with this field. In particular, the conventional, central hot spot ignition approach to laser fusion is discussed together with the more recent ones - fast ignition, shock ignition and impact ignition fusion. The research projects directed towards building an experimental laser-driven thermonuclear reactor are presented as well

[1] J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: thermonuclear applications”, Nature 239, 139 (1972).

[2] S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, Oxford, 2004.

[3] M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, and R.J. Mason, “Ignition and high gain with ultrapowerful lasers”, Phys. Plasmas 1, 1626 (1994).

[4] J. Badziak, S. Jabłoński and J. Wołowski, “Progress and prospect of fast ignition of ICF targets”, Plasma Phys. Control. Fusion 49, B651-B666 (2007).

[5] M.H. Key, “Status of and prospects for the fast ignition inertial fusion concept”, Phys. Plasmas 14, 055502 (2007).

[6] J.C. Fernandez, J.J. Honrubia, B.J. Albright, K.A. Flippo, D.C. Gautier, B.M. Hegelich, M.J. Schmitt, M. Temporal, and L. Yin, “Progress and prospects of ion-driven fast ignition”, Nucl. Fusion 49, 065004 (2009).

[7] R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, A.A. Solodov, “Shock ignition of thermonuclear fuel with high areal density”, Phys. Rev. Lett. 98, 155001 (2007).

[8] A. Caruso and V.A. Pais “The ignition of dense DT fuel by injected triggers”, Nuclear Fusion 36, 745-757 (1996).

[9] M. Murakami and H. Nagatomo, “A new twist for inertial fusion energy: Impact ignition”, Nuclear Instruments and Methodsin Physics Research A 544, 67-75 (2005).

[10] E.I. Moses, “The national ignition facility and the national ignition campaign”, IEEE Trans. on Plasma Science 38, 684-689 (2010).

[11] Laser Megajoule website:

[12] J.L. Kline, S.H. Glenzer, R.E. Olson, L.J. Suter, K. Widmann et al., “Observation of high soft X-ray drive in large-scale Hohlraums at the national ignition facility”, Phys. Rev. Lett. 106, 085003 (2011).

[13] S.H. Glenzer, B.J. MacGowan, N.B. Meezan, P.A. Adams, J.B. Alfonso et al., “Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion Hohlraums”, Phys. Rev. Lett. 106, 085004 (2011).

[14] S.H. Glenzer, B.J. MacGowan, P. Michel, N.B. Meezan, L.J. Suter et al., “Symmetric inertial confinement fusion implosion at ultra-high laser energies”, Science 327, 1228-1231 (2010).

[15] D.A. Callahan, N. B. Meezan, S.H. Glenzer, A.J. MacKinnon, L.R. Benedetti et al., “The velocity campaign for ignition on NIF”, Phys. Plasmas 19, 056305 (2012).

[16] S.H. Glenzer, D.A. Callahan, A.J. MacKinnon, J.L. Kline, G. Grim et al., “Cryogenic thermonuclear fuel implosions on the National Ignition Facility”, Phys. Plasmas 19, 056318 (2012).

[17] B.G. Logan, L.J. Perkins, and J.J. Barnard, “Direct drive heavy-ion-beam inertial fusion at high coupling efficiency”, Phys. Plasmas 15, 072701 (2008).

[18] P.A. Norreys, R. Allott, R.J. Clarke, J. Collier, D. Neely, S.J. Rose, M. Zepf, M. Santala, A.R. Bell, K. Krushelnick, A.E. Dangor, N.C. Woolsey, R.G. Evans, H. Habara, T. Norimatsu, and R. Kodama, “Experimental studies of the advanced fast ignitor scheme”, Phys. Plasmas 7, 3721-3726 (2000).

[19] R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K.M. Krushelnick, K.L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, A. Youssef, and M. Zepf, “Nuclear fusion - fast heating scalable to laser fusion ignition”, Nature 418, 933-934 (2002).

[20] S. Atzeni, “Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel”, Phys. Plasmas 6, 3316-3326 (1999).

[21] J. Badziak, S. Jabłoński, P. Parys, M. Rosiński, J. Wołowski, A. Szydłowski, P. Antici, J. Fuchs, and A. Mancic, “Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration”, J. Appl. Phys. 104, 063310 (2008).

[22] J.J. Honrubia and J. Meyer-ter-Vehn, “Three-dimensional fast electron transport for ignition-scale inertial fusion capsules”, Nucl. Fusion 46, L25-L28 (2006).

[23] J. Badziak, S. Jabłoński, and P. Rączka, “Highly efficient generation of ultraintense high- energy ion beams using laserinduced cavity pressure acceleration”, Appl. Phys. Lett. 101, 084102 (2012).

[24] X. Ribeyre, M. Lafon, G. Schurtz, M. Olazabal-Loume, J. Breil, S. Galera, and S. Weber, “Shock ignition: modeling and target design robustness”, Plasma Phys. Control. Fusion 51, 015013 (2009).

[25] W. Theobald, R. Betti, C. Stoeckl, K.S. Anderson, J.A. Delettrez, V. Yu. Glebov, V.N. Goncharov, F.J. Marshall, D.N. Maywar, R.L. McCrory, D.D. Meyerhofer, P.B. Radha, T.C. Sangster, W. Seka, D. Shvarts, V.A. Smalyuk, A.A. Solodov, B. Yaakobi, C.D. Zhou, J.A. Frenje, C.K. Li, F.H. Seguin, R.D. Petrasso, and L.J. Perkins, “Initial experiments on the shock-ignition inertial confinement fusion concept”, Phys. Plasmas 15, 056306 (2008).

[26] H. Azechi, T. Sakaiya, T. Watari, M. Karasik, H. Saito, et al., “Experimental Evidence of Impact Ignition: 100-Fold Increase of Neutron Yield by Impactor Collision”, Phys. Rev. Lett. 102, 235002 (2009).

[27] T. Norimatsu, Y. Shimada, H. Furukawa, T. Kunugi, H. Nakajima, Y. Kajimura, R. Tsuji, H. Yoshida, and K. Mima, “Activities on the laser fusion reactor KOYO-F in Japan”, FusionSci. Eng. 52, 361-368 (2009).

[28] R.W. Moir, R.L. Bieri, X.M. Chen, T.J. Dolan, M.A. Hoffman, P.A. House, R.L. Leber, J.D. Lee, Y.T. Lee, J.C. Liu, G.R. Longhurst, W.R. Meier, P.F. Peterson, R.W. Petzoldt, V.E. Schrock, M.T. Tobin, and W.H. Williams, “HYLIFE-II - a molten-salt inertial fusion energy power plant design - final report”, Fusion Technol. 25, 5-25 (1994).

[29] LIFE website:

[30] H. Azechi, “The FIREX program on the way to inertial fusion energy”, J. Physics: Conf. Series 112, 012002 (2008).

[31] M. Dunne, “A high-power laser fusion facility for Europe”, Nature Phys. 2, 2-5 (2006).

[32] HiPER website:

[33] J. Badziak and S. Jabłoński, “Ultraintense ion beams driven by a short-wavelength short-pulse laser”, Phys. Plasmas 17, 073106 (2010).

[34] J. Badziak, S. Jabłoński, P. Parys, A. Szydłowski, J. Fuchs, and A. Mancic, “Production of high-intensity proton fluxes by a 2! Nd:glass laser beam”, Laser and Particle Beams 28, 575-583 (2010).

[35] J. Badziak, G. Mishra, N.K. Gupta, and A.R. Holkundkar, “Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications”, Phys. Plasmas 18, 053108 (2011).

[36] J. Badziak, A. Kasperczuk, P. Parys, T. Pisarczyk, M. Rosiński, L. Ryć, J. Wołowski, R. Suchańska, J. Krasa, E. Krousky, L. Laska, K. Masek, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, L. J. Dhareshwar, I.B. Foldes, T. Suta, A. Borrielli, A. Mezzasalma, L. Torrisi, and P. Pisarczyk, “The effect of high-Z dopant on laser-driven acceleration of a thin plastic target”, Appl. Phys. Lett. 92, 211502 (2008).

[37] J. Badziak, S. Borodziuk, T. Pisarczyk, T. Chodukowski, E. Krousky, K. Masek, J. Skala, J. Ullschmied, and Yong- Joo Rhee, “Highly efficient acceleration and collimation of high- density plasma using laser-induced cavity pressure”, Appl. Phys. Lett. 96, 251502 (2010).

[38] J. Badziak, S. Jabłoński, T. Pisarczyk, P. Rączka, E. Krousky, R. Liska, M. Kucharik, T. Chodukowski, Z. Kalinowska, P. Parys, M. Rosiński, S. Borodziuk, and J. Ullschmied, “Highly efficient acccelerator of dense matter using laserinduced cavity pressure acceleration”, Phys. Plasmas 19, 053105 (2012).

[39] S. Jacquemot, F. Amiranoff, S.D. Baton, J.C. Chanteloup, C. Labaune, M. Koenig, D.T. Michel, F. Perez, H.P. Schlenovoigt, B. Canaud, C. Cherflis Cl´erouin, G. Debras, S. Depierreux, J. Ebradt, D. Juraszek, S. Lafitte, P. Loiseau, J.L. Miquel, F. Philippe, C. Rousseaux, N. Blanchot, C.B. Edwards, P. Norreys, S. Atzeni, A. Schiavi, J. Breil, J.L. Feugeas, L. Hallo, M. Lafon, X. Ribeyre, J.J. Santos, G. Schurtz, V. Tikhonchuk, A. Debayle, J.J. Honrubia, M. Temporal, D. Batani, J.R. Davies, F. Fiuza, R.A. Fonseca, L.O. Silva, L.A. Gizzi, P. Koester, L. Labate, J. Badziak, and O. Klimo, “Studying ignition schemes on European laser facilities”, Nucl. Fusion 51, 094025 (2011).

[40] D. Batani, M. Koenig, S. Baton, F. Perez, L.A. Gizzi, P. Koester, L. Labate, J. Honrubia, L. Antonelli, A. Morace, L. Volpe, J. Sanots, G. Schurtz, S. Hulin, X. Ribeyre, C. Fourment, P. Nicolai, B. Vauzour, L. Gremillet, W. Nazarov, J. Pasley, M. Richetta, K. Lancaster, Ch. Spindloe, M. Tolley, D. Neely, M. Kozlov´a, J. Nejdl, B. Rus, J. Wolowski, J. Badziak, and F. Dorchies, “The HiPER project for inertial confinement fusion and some experimental results on advanced ignition schemes”, Plasma Phys. Control. Fusion 53, 124041 (2011).

[41] J. Badziak, T. Pisarczyk, T. Chodukowski, A. Kasperczuk, P. Parys, M. Rosiński, J. Wołowski, E. Krousky, J. Krasa, K. Masek, M. Pfeifer, J. Skala, J. Ullschmied, A. Velyhan, L.J. Dhareshwar, N.K. Gupta, Yong-Joo Rhee, L. Torrisi and P. Pisarczyk, “Formation of a supersonic laser-driven plasma jet in a cylindrical channel”, Phys. Plasmas 16, 114506 (2009).

[42] A. Kasperczuk, T. Pisarczyk, M. Kalal, J. Ullschmied, E. Krousky, K. Masek, M. Pfeifer, K. Rohlena, J. Skala, and P. Pisarczyk, “Influence of target material on structure of the plasma outflow produced by a partly defocused laser beam”, Appl. Phys. Lett. 94, 081501 (2009).

[43] A. Kasperczuk, T. Pisarczyk, J. Badziak, S. Borodziuk, T. Chodukowski, S. Yu Gus’kov, N.N. Demchenko, D. Klir, J. Kravarik, P. Kubes, K. Rezac, J. Ullschmied, E. Krousky, K. Masek, M. Pfeifer, k. Rohlena J. Skala, and P. Pisarczyk, “Interaction of a laser- produced copper plasma jet with ambient plastic plasma”, Plasma Phys. Control. Fusion 53, 095003 (2011).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 210 209 36
PDF Downloads 97 96 17