EU Project of Life Programme “Algae Service for Life” Creates Tools for Ecological Service to Mitigate Cyanobacteria and Macroalgae Blooms in Freshwater Ecosystems

Open access


EU international project of LIFE programme “Algae Service for LIFE” seeks to promote best practices in ecological service and development of circular economy. The goal of the project is to demonstrate integrated efficient management of nutrients and nuisance algal blooms at the catchment scale by harvesting cyanobacteria scums and macroalgae mats in various types of water bodies (rivers, lakes and estuarine lagoon). Also, it seeks to raise awareness of the national and local authorities, business community and society on the environmental, water quality and health hazard issues. The paper provides the idea of applying ecological measures to control algal blooms. Thus, issues related to the causes and mechanisms of eutrophication in inland freshwaters as well as to consequences such as algal blooms are highlighted. The measures proposed in the project are briefly discussed in the light of European Union directives.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adey W. Luckett C. Jensen K. 1993: Phosphorus Removal from Natural Waters Using Controlled Algal Production. – Restoration Ecology 29–39.

  • Bergström L. Ahtiainen H. Avellan L. Estlander S. Haapaniemi J. Haldin J. Hoikkala L. Ruiz M. Rowe O. Li Zweifel U. 2017: State of the Baltic Sea. Second HELCOM holistic assessment 2011–2016 S. Baltic Sea Environment Proceedings 155.

  • Bingham M. Sinha S.K. Lupi F. 2015: Economic benefits of reducing harmful algal blooms in Lake Erie. – Environmental Consulting & Technology 66: 1–68.

  • Bresciani M. Adamo M. De Carolis G. Mat Ta E. Pasquariello G. Vaičiūtė D. Giardino C. 2014: Monitoring blooms and surface accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. – Remote Sensing of Environment 146: 124–135.

  • Carmichael W.W. Drapeau C. Anderson D.M. 2000: Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human dietary use. – Journal of Applied Phycology 12: 585–595.

  • Codd G.A. Bell S.G. Kaya K. Ward C.J. Beattie K.A. Metcalf J.S. 1999: Cyanobacterial toxins exposure routes and human health. – European Journal of Phycology 34: 405–415.

  • Cole A.J. De Nys R. Paul N.A. 2014: Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux. PLoS ONE 9(7): e101284.

  • Combating Eutrophication in the Baltic Sea: further and more effective action needed 2016: Special report of European court of auditors 6.

  • Dondajewska R. Kowalczewska-Madura K. Gołdyn R. Kozak A. Messyasz B. Cerbin S. 2019: Long-term water quality changes as a result of a sustainable restoration – a case study of dimictic Lake Durowskie. – Water 11: 616.

  • Elser J.J. Bracken M.E.S. Cleland E.E. Gruner D.S. Harpole W.S. Hillebrand H. Ngai J.T. Seabloom E.W. Shurin J.B. Smith J.E. 2007: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater marine and terrestrial ecosystems. – Ecology Letters 10(12): 1135–1142.

  • EPA 2015: A compilation of cost data associated with impacts and control of nutrient pollution. Report of U.S. Environment Protection Agency EPA-820-F-15-096. [Assessed 20-05-2019].

  • Gröndahl F. 2009: Removal of surface blooms of the cyanobacteria Nodularia spumigena: a pilot project conducted in the Baltic Sea. – AMBIO: A Journal of the Human Environment 38(2): 79–84.

  • HELCOM 2018: Sources and pathways of nutrients to the Baltic Sea. – In: Sonesten L. Svendsen L.M. Tornbjerg H. Gustafsson B. Frank-Kamenetsky D. Haapaniemi J. (eds) Baltic Sea Environment Proceedings 153: 1–47. – Helsinki.

  • Ibisch R. Austnes K. Borchardt D. Boteler B. Leujak W. Lukat E. Rouillard J. Schmedtje U. Solheim A.L. Westphal K. 2016: European assessment of eutrophication abatement measures across land-based sources inland coastal and marine waters. − European Topic Centre on Inland Coastal and Marine Waters (ETC-iCM) UFZ. – Magdeburg.

  • Koreivienė J. Anne O. Kasperovičienė J. Burškytė V. 2014: Cyanotoxin management and human health risk mitigation in recreational waters. – Environmental Monitoring and Assessment 186: 4443–4459.

  • Krztoń W. Kosiba J. Pociecha A. Wilk-Woźniak E. 2019: The effect of cyanobacterial blooms on bio - and functional diversity of zooplankton communities. – Biodiversity and Conservation 28(7): 1815–1835.

  • Kudela R.M. Berdalet Ae. Bernard S. Burford M. Fernand L. Lu S. Roy S. Tester P. Usup G. Magnien R. Anderson D.M. Cembel-

  • La A. Chinain M. Hallegraeff G. Reguera B. Zingone A. Enevoldsen H. Urban (ed.) 2015: Harmful Algal Blooms. A Scientific Summary for Policy Makers. – IOC/UNESCO IOC/INF-1320. – Paris.

  • Mantzouki E. Lürling M. Fastner J. De Senerpont Domis L. Wilk-Wózniak E. Koreivienė J. Seelen L. et al. 2018: Temperature effects explain continental scale distribution of cyanobacterial toxins. – Toxins 10: e156.

  • Meriluoto J. Blaha L. Bojadzija G. Bormans M. Brient L. Codd G.A. Drobac D. Faassen E.J. Fastner J. Hiskia A. Ibelings B.W. Kaloudis T. Kokocinski M. Kurmayer R. Pantelić D. Quesada A. Salmaso N. Tokodi N. Triantis T.M. Visser P.M. Svirčev Z. 2017: Toxic cyanobacteria and cyanotoxins in European waters – recent progress achieved through the CYANOCOST action and challenges for further research. – Advances in Oceanography and Limnology 8: 161–178.

  • Messyasz B. Łęska B. Fabrowska J. Pikosz M. Roj E. Cieslak A. Schroeder G. 2015: Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. – Open Chemistry 13: 1108–1118.

  • Messyasz B. Pikosz M. Treska E. 2018: Biology of freshwater macroalgae and their distribution 3. – In: Chojnacka K. Wieczorek P.P. Schroeder G. Michalak I. (eds) Developments in Applied Phycology 8. Algae biomass: characteristics and applications. Towards algae-based products: 17–31. – The Netherlands.

  • Paerl H.W. Huisman J. 2009: Climate Change: A Catalyst For Global Expansion Of Harmful Cy-Koreivienė J. Karosienė J. Kasperovičienė J. Paškauskas R. Messyasz B. Łęska B. Pankiewicz R. Gulbinas Z. Valskys V. Walusiak E. Krzton W. Kustosz D. Wilk-Woźniak E. Anobacterial Blooms. – Environmental Micro-Biology Reports 1: 27–37.

  • Paerl H.W. Scott J.T. Mccarthy M.J. Newell S.E. Gardner W.S. Havens K.E. Hoffman D.K. Wilhelm S.W. Wurtsbaugh W.A. 2016: It Takes Two To Tango: When And Where Dual Nutrient (N & P) Reductions Are Needed To Protect Lakes And Downstream Ecosystems. – Environmental Science & Technology 50: 10805−10813. Paldavičienė A. Zaiko A. Mazur-Marzec H. Razinokvas-Baziukas A. 2015: Bioaccumulation of microcystins in invasive bivalves: a case study from the boreal lagoon ecosystem. – Oceanologia 57: 93–101.

  • Papadimitriou T. Kagalou I. Bacopoulos V. Leonardos I.D. 2010: Accumulation of microcystins in water and fish tissues: an estimation of risks associated with microcystins in most of the Greek lakes. – Environmental Toxicology 25: 418–427.

  • Pechsiri J.S. Risén E. Malmström M.E. Brandt N. Gröndahl F. 2014: Harvesting of Nodularia spumigena in the Baltic Sea: assessment of potentials and added benefits. – Journal of Coastal Research 30(4): 825–831.

  • Pikosz M. Messyasz B. Gąbka M. 2017: Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland. – Ecological Indicators 74: 1–9.

  • Pretty J.N. C.F. Mason Nedwell D.B. Hine R.E. Leaf S. Dils R. 2003: Environmental Costs of Freshwater Eutrophication in England and Wales. – Environmental Science & Technology 37(2): 201–208.

  • Rolighed J. Jeppesen E. Søndergaard M. Bjerring R. Janse J.H. Mooij W.M. Trolle D. 2016: Climate change will make recovery from eutrophication more difficult in shallow Danish Lake Søbygaard. – Water 8(10): 459.

  • Sanseverino I. Conduto António D. Loos R. Lettieri T. 2017: Cyanotoxins: methods and approaches for their analysis and detection. – JRC Technical Reports EUR 28624 EN.

  • Stepanauskas R. Jorgensen N.O.G. Eigaard O.R. Zvikas A. Tranvik L.J. Leonardson L. 2002: Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance. − Ecological Monographs 72(4): 579−597.

  • Stoyneva-Gärtner M. Uzunov B. Dimitrova P. 2017: Pilot Assessment Of Cyanotoxins As Potential Risk Factors For Cancer In Bulgaria. – Bio-Discovery 20: E20501.

  • Varunan T. Shanmugam P. 2017: An optical tool for quantitative assessment of phycocyanin pigment concentration in cyanobacterial blooms within inland and marine environments. – Journal of Great Lakes Research 43(1): 32–49.

  • Water Facts 1998: Algal Blooms. Newsletter of Water and Rivers Commission 6.

  • Weissteiner C.J. Bouraoui F. Aloe A. 2013: Reduction of nitrogen and phosphorus loads to European rivers by riparian buffer zones. − Knowledge and Management of Aquatic Ecosystems 408(08): 1–15.

  • Wulff F. Humborg C. Andersen H.E. Blicher-Mathiesen G. Czajkowski M. Elofsson K. Fonnesbech-Wulff A. Hasler B. Hong B. Jansons V. Mörth C.-M. Smart J.C.R. Smedberg E. Stålnacke P. Swaney D.P. Thodsen H. Was A. Zylicz T. 2014: Reduction of the Baltic Sea Nutrient Inputs and Allocation of Abatement Costs Within the Baltic Sea Catchment. − AMBIO 43: 11–25.

Journal information
Impact Factor

CiteScore 2018: 0.53

SCImago Journal Rank (SJR) 2018: 0.156
Source Normalized Impact per Paper (SNIP) 2018: 0.555

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 116 14
PDF Downloads 79 79 9