Variations of microcystins in freshwater ecosystems

Open access

Abstract

Koreivienė J., Belous O., Kasperovičienė J., 2012: Variations of microcystins in freshwater ecosystems [Mikrocystinai gėlavandenėse ekosistemose]. - Bot. Lith., 19(2): 139-148 Increased frequency, severity of harmful algae blooms and their extent worldwide have become a global challenge due to the production of toxins that are released to the water. Cyanotoxins are detected in 25-75% of blooms. Hazardous hepatotoxin-microcystin potential producers, spatial and temporal variations of toxins as well as their variations depending on environmental variables are discussed in this overview. The most common species among microcystin producers belong to the genera Dolichospermum and Microcystis. Variations of the amount of microcystins detected through the bloom are associated with the dominant cyanobacteria species or its genotype. The abundance of toxic cyanobacteria genotype and cyanotoxin values increase with the rise of water temperature and nutrient concentrations in the freshwaters. On the seasonal basis, cell-bound microcystin concentrations increase with bloom development, whereas extracellular cyanotoxin values rise with the senescing of bloom after cyanobacterial cell lysis.

Santrauka

Toksinus sintetinančių melsvabakterių intensyvus vystymasis lėmė globalius iššūkius žmonijai dėl daž- nesnių, didesnio mąsto bei plačiai išplitusių toksinių „vandens žydėjimų" visame pasaulyje. Cyanotoksinai aptinkami 25-75% „vandens žydėjimų'\ Apžvalgoje pateikiamos melsvabakterių rūšys, sintetinančios pa- vojingus hepatotoksinus mikrocistinus, šių toksinų kiekio kaita laike ir erdvėje, jų kiekio priklausomybė nuo skirtingų aplinkos faktorių. Mikrocistinus daž- niausiai produkuoja Dolichospermum ir Microcystis genčių rūšys. Šių toksinų kiekio svyravimai „žydėj i- mo“ metu pirmiausiai priklauso nuo melsvabakterių rūšies ar jos genotipo. Toksinių melsvabakterių geno- tipų gausumas, o taip pat ir mikrocistinų kiekis didėja kylant vandens temperatūrai ir didėjant maismedžia- gių kiekiams gėlavandenėse hidroekosistemose. Ląs- telėje surištų mikrocystinų kiekiai didėja formuojantis „vandens žydėjimui“, tuo tarpu vandenyje ištirpusių mikrocystinų kiekiai padidėja „žydėjimo"4 pabaigoje, dėl cianobakterijų ląstelių irimo.

References
  • Backer L.C., McNeel S.V., Barber T., Kirkpatrick B., Williams C., Irvin M., Zhou Y., Johnson T.B., Nierenberg K., Aubel M., LePrell R., Chapman A., Foss A., Corum S., Hill V.R., Kieszak S.M., Cheng Y.S., 2010: Recreational exposure to microcystins during algal blooms in two California lakes. - Toxicon, 55: 909-921.

  • Baxa D.V., Kurobe T., Ger K.A., Lehman P.W., Teh S.J., 2010: Estimating the abundance of toxic Microcystis in the San Francisco Estuary using quantitative real-time PCR. - Harmful Algae, 9: 342-349.

  • Briand E., Escoff ier N., Straub C., Sabart M., Quiblier C., Humb ert J.F., 2009: Spatiotemporal changes in the genetic diversity of a bloomforming Microcystis aeruginosa (Cyanobacteria) population. - ISME Journal, 3: 419-429.

  • Briand J.F., Jacquet S., Flinois C., Avois-Jacquet C., Maisonnette C., Leberre B., Humb ert J.F., 2005: Variations in the microcystin production of Planktothrix rubescens (Cyanobacteria) assessed from a four-year survey of Lac du Bourget (France) and from laboratory experiments. - Microbial Ecology, 50: 418-428.

  • Cao H. & Yang Z., 2010: Variation in colony size of Microcystis aeruginosa in a eutrophic lake during recruitment and bloom formation. - Journal of Freshwater Ecology, 25(3): 331-335.

  • Carmichael W.W., 1992: Cyanobacteria secondary metabolites - the cyanotoxins. - Journal of Applied Bacteriology, 72: 445-459.

  • Chorus I., 2001 (ed.): Cyanotoxins, occurrence, causes, consequences. - Heidelberg.

  • Chorus I., Bartram J. (eds), 1999: Toxic cyanobacteria: a guide to their public health consequences monitoring and management. - London.

  • Codd G.A., Bell S.G., Kaya K., Ward C.J., Beattie K.A., Metcalf J.S., 1999: Cyanobacterial toxins, exposure routes and human health. - European Journal of Phycology, 34: 405-415.

  • Davis T.W., Berry D.L., Boyer G.L., Gobler C.J., 2009: The effects of temperature and nutrients on the growth and dynamics of toxic and nontoxic strains of Microcystis during cyanobacteria blooms. - Harmful Algae, 8: 715-725.

  • Dittmann E., Erhard M., Kaebernick M., Scheler C., Neilan B.A., Döhren H. Von, Borner T., 2001: Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. - Microbiology, 147: 3113-3119.

  • Engström-Öst J., Repka S., Mikk onen M., 2011: Interactions between plankton and cyanobacterium Anabaena with focus on salinity, growth and toxin production. - Harmful Algae 10: 530-535.

  • Figueiredo D.R., Azeiteiro U.M., Esteves S.M., Gonçalves F.J.M., Pereira M.J., 2004: Microcystin- producing blooms - a serious global public health issue. - Ecotoxicology and Environmental Safety, 59: 151-163.

  • Gouvêa S.P., Boyer G.L., Twiss M.R., 2008: Influence of ultraviolet radiation, copper, and zinc on microcystin content in Microcystis aeruginosa (Cyanobacteria). - Harmful Algae, 7: 194-205.

  • Graham J.L., Jones J.R., Jones S.B., Downingc J.A., Clevenger T.E., 2004: Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. - Water Research, 38: 4395-4404.

  • Graham J.L., Loftin K.A., Meyer M.T., Ziegler A.C., 2008: Cyanobacteria in lakes and reservoirs - toxin and taste and odor sampling guidelines (ver. 1.0). U.S. Geological survey techniques of water resources investigations. Book 9, Chapter A7, Section 7.5 (http://pubs.water.usgs.gov/twri9A/).

  • Halinen K., Jokela J., Fewer D.P., Wahlsten M., Sivonen K., 2007: Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. - Applied and Environmental Microbiology, 73( 20): 6543-6550.

  • Harada K.I., Mayumi T., Shimada T., Fujii K., Kondo F., Park H., Watanabe M.F., 2001: Co-production of microcystins and aeruginopeptins by natural cyanobacterial bloom. - Environmental Toxicology, 16: 298-305.

  • Hotto A.M., Satchwell M.F., Berry D.L., Gobler C.J., Boyer G.L., 2008: Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. - Harmful Algae, 7: 671-681.

  • Hudnell H.K., 2010: The state of U.S. freshwater harmful algal blooms assessments, policy and legislation. - Toxicon, 55: 1024-1034.

  • Jacoby J.M., Collier D.C., Welch E.B., Hardy F.J., Crayton M., 2000: Environmental factors associated with a toxic bloom Microcystis aeruginosa. - Canadian Journal of Fisheries and Aquatic Sciences, 57: 231-240.

  • Joung S.H., Oh H.M., Ko S.R., Ahn C.Y., 2011: Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. - Harmful Algae, 10: 188-193.

  • Kaebernick M., Neilan B.A., Börner T., Dittmann E., 2000: Light and transcriptional response of the microcystin biosynthesis gene cluster. - Applied and Environmental Microbiology, 66 (8): 3387-3392.

  • Kardinaal W.E.A., Visser P.M., 2005: Dynamics of cyanobacterial toxins. Sources of variability in microcystin concentrations. - In: Huisman J., Matthijs H.C.P., Visser P.M. (eds), Harmful cyanobacteria: 41-63. - Netherlands.

  • Katırcıoğlu H., Akı n B.S., Atıcı T., 2004: Microalgal toxin(s): characteristics and importance. - African Journal of Biotechnology, 3 (12): 667-674.

  • Krüger T., Wiegand C., Kun L., Luckas B., Pflugmacher S., 2010: More and more toxins around - analysis of cyanobacterial strains isolated from Lake Chao (Anhui Province, China). - Toxicon, 56: 1520-1524.

  • Kurmayer R., Christiansen G., 2009: The genetic basis of toxin production in Cyanobacteria. - Freshwater Reviews, 2: 31-50.

  • Kurmayer R., Christiansen G., Chorus I., 2003: The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee. - Applied and Environmental Microbiology, 69(2): 787-795.

  • Kurmayer R., Dittmann E., Fastner J., Chorus I., 2002: Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee. - Microbial Ecology, 43(1): 107-118.

  • Kurmayer R., Kutzenberger T., 2003: Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. - Applied and Environmental Microbiology, 69: 6723-6730.

  • Kurmayer R., Gumpenberger M., 2006: Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. - Molecular Ecology, 15: 3849-3861.

  • Li H., Murphy T., Guo J., Parr T., Nalewajk o C., 2009: Iron-stimulated growth and microcystin production of Microcystis novacekii UAM 250. - Limnologica, 39: 255-259.

  • Lindholm T., 1991: Recurrent depth maxima of the hepatotoxic cyanobacterium Oscillatoria agardhii. - Canadian Journal of Fisheries and Aquatic Sciences, 48:1629-1634.

  • Liu Y., 2006: Effects of salinity on the growth and toxin production of a harmful algal species, Microcystis aeruginosa. - J. U.S. SJWP, 1: 91-111.

  • Lukac M., Aegerter R., 1993: Influence of trace metals on growth and toxin production of Microcystis aeruginosa. - Toxicon, 31: 293-305.

  • Makarewicz J.C., Boyer G.L., Lewis T.W., Guenther W., Atkinson J., Arnold M., 2009: Spatial and temporal distribution of the cyanotoxin microcystin-LR in the Lake Ontario Ecosystem: coastal embayments, rivers, nearshore and offshore, and upland lakes. - Journal of Great Lakes Research, 35(1): 83-89.

  • Metting B., Pyne J.W., 1986: Biologically active compounds from microalgae. - Enzyme and Microbial Technology, 8: 386-394.

  • Misson B., Sabart M., Amb lard C., Latour D., 2011: Involvement of microcystins and colony size in the benthic recruitment of the cyanobacterium Microcystis (Cyanophyceae). - Journal of Phycology, 47(1): 42-51.

  • Mitsuhiro Y., Takashi Y., Yukari T., Naohiko H., Shingo H., 2007: Dynamics of microcystinproducing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. - FEMS Microbiology Letters, 266: 49-53.

  • Murphy T.P., Irvine K., Guo J., Davies J., Murkin H., Charlton M., Watson S.B., 2003: New microcystin concerns in the lower Great Lakes. - Water Quality Research Journal of Canada, 38(1): 127-140.

  • Namikoshi M., Sun F., Choi B.W., Rinehart K.L., Carmichael W.W., Evans W.R., Beasley V .R., 1995: Seven more microcystins from Homer Lake cells: application of the general method for structure assignment of peptides containing a,bdehydroamino acid unit(s). - The Journal of Organic Chemistry, 60: 3671-3679.

  • Okello W., Ostermaier V., Portmann C., Gademann K., Kurmayer R., 2010: Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes. - Water Research, 44: 2803-2814.

  • Orr P.T., Jones G.J., 1998: Relationship between microcystin production and cell division rates in nitrogen- limited Microcystis aeruginosa cultures. - Limnology and Oceanography, 43: 1604-1614.

  • Orr P.T., Jones G.J., Douglas G.B., 2004: Response of cultured Microcystis aeruginosa from the Swan River, Australia, to elevated salt concentration and consequences for bloom and toxin management in estuaries. - Marine and Freshwater Research, 55(3): 277-283.

  • Paerl H.W., Huisman J., 2008: Blooms like it hot. - Science, 320: 57-58.

  • Pan G., Yang B., Wang D., Chen H., Tian B., Zhang M., Yuan X., Chen J., 2011: In-lake algal bloom removal and submerged vegetation restoration using modified local soils. - Ecological Engineering, 37: 302-308.

  • Park H.D., Watanabe M.F., Harada K.I., Suzuki M., Hayashi H., Okino T., 1993: Seasonal variations of Microcystis species and toxic heptapeptide microcystins in Lake Suwa. - Environmental Toxicology and Water Quality, 8: 425-435.

  • Pearson L., Mihali T., Moff itt M., Kellmann R., Neilan B., 2010: On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. - Marine Drugs, 8: 1650-1680.

  • Rantala A., Rajaniemi-Wacklin P., Lyra C., Lepistø L., Rintala J., Mankiewicz-Boczek J., Sivonen K., 2006: Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. - Applied and Environment Microbiology, 72: 6101-6110.

  • Rapala J., Sivonen K., Lyra C., Niemelä S.I., 1997: Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. - Applied and Environmental Microbiology, 63: 2206-2212.

  • Ressom R., Soong F.S., Fitzgerald J., Turczy nowicz L., El Saadi O., Roder D., Maynard T ., Falconer I., 1994: Health effects of toxic cyanobacteria (Blue-Green Algae). - Canberra.

  • Rinta-Kanto J.M., Wilhelm S.W., 2006: Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie. - Applied and Environmental Microbiology, 72 (7): 5083-5085.

  • Rinta-Kanto J.M., Konopko E.A., DeBruyn J.M., Bourbonniere R.A., Boyer G.L., Wilhelm S.W., 2009: Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. - Harmful Algae, 8: 665-673.

  • Rogalus M.K., Watzin M.C., 2008: Evaluation of sampling and screening techniques for tiered monitoring of toxic cyanobacteria in lakes. - Harmful Algae, 7: 504-514.

  • Sabart M., Pobel D., Briand E., Comb ourieu B., Salençon M.J., Humb ert J.F., Latour D., 2010: Spatiotemporal variations in microcystin concentrations and in the proportions of microcystinproducing cells in several Microcystis aeruginosa populations. - Applied and Environmental Microbiology, 76(14): 4750-4759.

  • Sainis I., Fokas D., Vareli K., Tzakos A.G., Kounnis V., Briasoulis E., 2010: Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. - Marine Drugs, 8: 629-657.

  • Sekadende B.C., Lyimo T.J., Kurmayer R., 2005: Microcystin production by cyanobacteria in the Mwanza Gulf (Lake Victoria, Tanzania). - Hydrobiologia, 543: 299-304.

  • Sevilla E., Martin-Luna B., Vela L., Bes M.T., Fillat M.F., Peleato M.L., 2008: Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. - Environmental Microbiology, 10: 2476-2483.

  • Sivonen K., Jones G., 1999: Cyanobacterial toxins. - In: Chorus I., Bartram J. (ed.), Toxic cyanobacteria: a guide to their public health consequences monitoring and management: 41-111. - London.

  • Svrcek C., Smith D.W., 2004: Cyanobacteria toxins and the current state of knowledge on water treatment options, a review. - Journal of Environmental Engineering and Science, 3(3): 155-185.

  • Te S.H., Gin K.Y.H., 2011: The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. - Harmful Algae, 10: 319-329.

  • Tonk L., Bosch K., Visser P.M., Huisman J., 2007: Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. - Aquatic Microbial Ecology, 46: 117-123.

  • Tonk L., Visser P.M., Christiansen G., Dittmann E., Snelder E.O., Wiedner C., Mur L.R., Huisman J., 2005: The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. - Applied and Environmental Microbiology, 71: 5177-5181.

  • Utkilen H., Gjolme N., 1992: Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. - Applied and Environmental Microbiology, 58 (4): 1321-1325.

  • Vézie C., Rapala J., Vaitomaa J., Seitsonen J., Sivonen K., 2002: Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. - Microbial Ecology, 43: 443-454.

  • Via-Ordorika L., Fastner J., Kurmayer R., Hisbergues M., Dittmann E., Komárek J., Erhard M., Chorus I., 2004: Distribution of microcystin producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. - Systematic and Applied Microbiology, 27: 592-602.

  • Wang X., Sun M., Xie M., Liu M., Luo L., Li P., Kong F., 2013: Differences in microcystin production and genotype composition among Microcystis colonies of different sizes in Lake Taihu. - Water Research, 47(15): 5659-5669.

  • WHO, 1998: Cyanobacterial toxins: microcystin-LR in drinking water. - Geneva.

  • Wiedner C., Visser P., Fastner J., Metcalf J.S., Codd G.A., Mur L.R., 2003: Effects of light on the microcystin content of Microcystis strain PCC 7806. - Applied and Environmental Microbiology, 69(3): 1475-1481.

  • Wilhelm S.W., Farnsley S.E., LeCleir G.R., Layton A.C., Satchwell M.F., DeBruyn J.M., Boyer G.L., Zhu G., Paerl H.W., 2011: The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. - Harmful Algae, 10: 207-215.

  • Willame R., Jurczak T., Iff ly J.-F., Kull T., Meriluoto J., Hoffm ann L., 2005: Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. - Hydrobiologia, 551: 99-117.

  • Wu S.K., Xie P., Liang G.D., Wang S.B., Liang X.M., 2006: Relationships between microcystins and environmental parameters in 30 subtropical shallow lakes along the Yangtze River, China. - Freshwater Biology, 51: 2309-2319.

  • Yoshida M., Yoshida T., Takashima Y., Hosoda N., Hiroishi S., 2007: Dynamics of microcystinproducing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. - FEMS Microbiology Letters, 266: 49-53.

  • Zurawell R.W., Chen H., Burke J.M., Prepas E.E., 2005: Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. - Journal of Toxicology and Environmental Health, Part B, 8: 1-37.

Botanica Lithuanica

The Journal of Nature Research Centre, Institute of Botany

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 18
PDF Downloads 6 6 4