Genetic analysis of microsatellite markers for salt stress in two contrasting maize parental lines and their RIL population

Open access


Salt stress considerably hinders the growth and productivity of maize (Zea mays L.). Identification of salt tolerant genotypes and integration of alternative molecular markers have important roles in enhancing breeding processes. In this study, 3308 maize expressed sequence tags (ESTs) from salt stress-related libraries were assembled to mine repetitive sequences for development of applicable markers. In this core EST data, 208 simple and 18 non-simple repetitive regions were detected in 312 contigs and 1121 singletons. The di-nucleotide repeats were the most abundant type and accounted for 79.3%, followed by tri (19.7%), and tetra-nucleotide (1%). Among 59 EST-simple sequence repeats (SSRs), a total of 55 were screened for polymorphism between F35 (salt sensitive) and F63 (salt tolerant) parents and 48 out of 55 were detected as monomorphic. Significantly, seven of them (12.7%) were found to be polymorphic and were used for genotyping of 158 F5 derived recombinant inbred maize lines, and four of them were located on chromosome 1 and 3. Using in silico mapping, 44 out of 59 EST-SSR markers were mapped on 10 maize chromosomes. Analysis of sequence homology revealed different functional groups such as: membrane transport, cell defense, cell division, signaling components, photosynthesis and cell metabolism. These EST-SSRs might be used as new functional molecular markers in the diversity analysis, identification of quantitative trait loci (QTLs) and comparative genomic studies in maize in the future.

Banisetti, K., Agrawal, P. K., Gupta, H. S., Kumar, A., Bhatt, J. C., 2012: Identifi cation of candidate gene based SSR markers for lysine and tryptophan metabolic pathways in maize. Plant Breeding 131, 20-27.

Besserer, A., Burnotte, E., Bienert, G. P., Chevalier, A. S., Errachid, A., Grefen, C., Blatt, M. R., 2012: Selective regulation of maize plasma membrane aquaporin traffi cking and activity by the Snare SYP121. Plant Cell 24, 3463-3481.

Bilgen, M., Karaca, M., Onus, A. N., Ince, A. G., 2004: A software program combining sequence motif searches with keywords for fi nding repeats containing DNA sequences. Bioinformatics 20, 3379-3386.

Bita, C. E., Gerats, T., 2013: Plant tolerance to high temperature in a changing environment: scientifi c fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4, 273.

Bray, E. A., Bailey-Serres, J., Weretilnyk, E., 2000: Responses to abiotic stresses. Chapter 22. In: Gruissem W., Buchannan B., Jones R. (eds.) American Society of Plant Physiologists, Rockville, MD, pp 1158-1240.

Cakmak, I., 2005: The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science 168, 521-530.

Cato, S., Gardner, R., Kent, J., Richardson, T., 2001: A rapid PCR based method for genetically mapping ESTs. Theoretical and Applied Genetics 102, 296-306.

Cui, D., Wu, D., Somarathna, Y., Xu, C., Li, S., Li, P., Zhang, H., Chen, H., Zhao, L., 2015: QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica 203, 273-283.

Davis, G. L., McMullen, M. D., Baysdorfer, C., Musket, T., Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Melia-Hancock, S., Houchins, K., Chao, S., Coe, E. H., 1999: A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152, 1137-1172.

Doyle, J. J., Doyle, J. L., 1987: A rapid DNA isolation procedure for small quantities of fresh tissue. Phytochemical Bulletin 19, 11-15.

Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J., 2000: Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51, 463-499.

Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., Ahmad, A., 2012: Role of proline under changing environments: A review. Plant Signaling & Behavior 7, 1456-1466.

Hu, C. A., Delauney, A. J., Verma, D. P., 1992: A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the fi rst two steps in proline biosynthesis in plants. Proceedings of the National Academy Sciences of the United States of America 89, 9354-9358.

Jayashree, B., Punna, R., Prasad, P., Bantte, K., Hash, C., Chandra, T., Hoisington, D. A., Varshney, R. K., 2006: A database of simple sequence repeats from cereal and legume expressed sequence tags mined in silico: survey and evaluation. In Silico Biology 6, 0054.

Kalia, K. R., Rai, M. K., Kalia, S., Singh, R., Dhawan, A. K., 2010: Microsatellite markers: an over view of the recent progress in plants. Euphytica 177, 309-334.

Kantety, R. V., Rota, M. L., Matthews, D. E., Sorrells, M. E., 2002: Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum, and wheat. Plant Molecular Biology 48, 501-510.

Karaca, M., Bilgen, M., Onus, A. N., Ince, A. G., Elmasulu, S. Y., 2005: Exact tandem repeats analyzer (eTRA): a new program for DNA sequence mining. Journal of Genetics 84, 49-54.

Klopfenstein, T. J., Ericksona, G. E., Berger, L. L. 2013: Maize is a critically important source of food, feed, energy and forage in the USA. Field Crops Research 153, 5-11.

Kosambi, D. D., 1943: The estimation of map distances from recombination values. Annals of Human Genetics 12, 172-175.

Lee, M. (eds.) 2007: Genomics-assisted crop improvement: Vol 2: Genomics applications in crops. Springer Science & Business Media.

Li, H. H., Ye, G. Y., Wang, J. K., 2007: A modifi ed algorithm for the improvement of composite interval mapping. Genetics 175, 361-374.

Li, H. H., Ribaut, J. M., Li, Z. L., Wang, J. K., 2008: Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theoretical and Applied Genetics 116, 243-260.

Lima, M. D., Souza, L. A., Jr, C. L. D., Souza, A. P. D., 2009: Microsatellite- dense genetic map: towards genome coverage in a tropical maize (Zea mays L.) population. Brazilian Journal of Botany 32, 499-508.

Liu, F., Zhang, X., Lu, C., Zeng, X., Li, Y., Fu, D., Wu, G., 2015: Non-specifi c lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. Journal of Experimental Botany 66, 5663-5681.

Lu, H., Romero-Severson, J., Brnard, R., 2002: Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics 105, 622-628.

Mattioli, R., Costantino, P., Trovato, M., 2009: Proline accumulation in plants: Not only stress. Plant Signaling and Behavior 4, 1016-1018.

Ngara, R., Ndimba, R., Borch-Jensen, J., Jensen, O. N., Ndimba, B., 2012: Identifi cation and profi ling of salinity stress-responsive proteins in Sorghum bicolor seedlings. Journal of Proteomics 75, 4139-4150.

Orsini, E., Krchov, L. M., Uphaus, J., Melchinger, A. E., 2012: Mapping of QTL for resistance to fi rst and second generation of European corn borer using an integrated SNP and SSR linkage map. Euphytica 183, 197-206.

Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P. A., Saedler, H., 1987: The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO Journal 6, 3553-3558.

Pereira, M. G., Lee, M., 1995: Identifi cation of genomic regions affecting plant height in sorghum and maize. Theoretical Applied Genetics 90, 380-388.

Rotmistrovsky, K., Jang, W., Schuler, G. D., 2004: A web server for performing electronic PCR. Nucleic Acids Research 32, 108-112.

Sa, K. J., Park, J. Y., Park, K. C., Lee, J. K., 2012: Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers. Genes and Genomics 34, 157-164.

Schubert, S., Zörb, C., Sümer, A., 2001: Salt resistance of maize: recent developments. In: Horst, W.J. et al. (eds.), Plant nutrition. Food security and sustainability of agro-ecosystems. Kluwer Academic Publisher, Dordrecht, The Netherlands.

Sharopova, N., McMullen, M. D., Schultz, L., Schroeder, S., Sanchez- Villeda, H., Gardiner, J., et al., 2002: Development and mapping of SSR markers for maize. Plant Molecular Biology 48, 463-481.

Shinozaki, N., Yamada, M., Yoshiba, Y., 2005: Analysis of salt stress-inducible ESTs isolated by PCR-subtraction in salt tolerant rice. Theoretical and Applied Genetics 110, 1177-1186.

Sibov, S. T., Lopes De Souza, Jr. C., Garcia, A. A., Garcia, A., Silva, A. R., Mangolin, C. A., Benchimol, L. L., De Souza. A. P., 2003: Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation. Hereditas 139, 96-106.

Singh, A., 2015: Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecological Indicators. 57, 128-130.

Voorrips, R. E., 2002: MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93, 77-78.

Wang, Z., Weber, J. L., Zhong, G., Tanksley, S. D., 1994: Survey of plant short tandem repeats. Theoretical and Applied Genetics 88, 1-6.

Wei, K., Zhong. X., 2014: Non-specifi c lipid transfer proteins in maize. BMC Plant Biology 14, 281.

Xiang, Y., Song, M., Wei, Z., Tong. J., Zhang, L., Xiao, L., Ma, Z., Wang, Y., 2011: A jacalin-related lectin-like gene in wheat is a component of the plant defence system. Journal of Experimental Botany 62, 5471-5483.

Xiang, C., Du, J., Zhang, P., Cao, G., Wang, D., 2015: Preliminary study on salt resistance seedling trait in maize by SRAP molecular markers. Advances in Applied Biotechnology. Springer, Berlin, Heidelberg, pp. 11-18.

Xie, Y., Mcnally, K., Li, C. Y., Leung, H., Zhu, Y. Y., 2006: A high-throughput genomic tool: diver sity array technology complementary for rice genotyping. Journal of Integrative Plant Biology 48, 1069-1076.

Xu, J., Liu, L., Xu, Y., Chen, C., Rong, T., Ali, F., Shufeng, Z., Fengkai, W., Yaxi, L., Jing, W., Moju, C., Lu, Y., 2013: Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize. DNA Research 20, 497-509.

Xue, S., Li, G., Jia, H., Lin, F., Cao, Y., Xu, F., Tang, M., Wang, Y., Wu, X., Zhang, Z., Zhang, L., Kong, Z., Ma, Z., 2010: Marker- assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Molecular Breeding 25, 397-405.

Yu, S., Zhang, X., Guan, Q., Takano, T., Liu, S., 2007: Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnology Letters 1, 89-94.

Yumurtaci, A., 2015: Utilization of wild relatives of wheat, barley, maize and oat in developing abiotic and biotic stres tolerant new varieties. Emirates Journal of Food and Agriculture 27, 1-23.

Zahra, A. R. F., De Costa, D. M., De Costa W. A. J M., 2013:. Identifi cation of differentially-expressed genes in response to salt stress in the salt-tolerant Sri Lankan rice variety At354. J National Sci Foundation Sri Lanka 41, 93-112.

Zhou, J. Q., Guo, Y. Q., Gao, Y. F., Li, J. S., Yan, J. B., 2011: A SSR linkage map of Maize×Teosinte F2 population and analysis of segregation distortion. Agricultural Sciences in China 10, 166-174.

Acta Botanica Croatica

The Journal of University of Zagreb

Journal Information

IMPACT FACTOR 2017: 0.58
5-year IMPACT FACTOR: 0.828

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.260
Source Normalized Impact per Paper (SNIP) 2017: 0.689


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 220 220 8
PDF Downloads 94 94 4