Relations between theoretical and real-time accessibility for inter-regional, intra-regional and intra-urban car journeys:The example of Poland

Open access


The article presents the results of research devoted to comparing accessibility in terms of theoretical and real travel times by car at inter-regional, intra-regional and intra-urban scales. The research strives to achieve three types of aim. The methodological aim is to assess the suitability of the data for research into transport geography, in particular with regard to accessibility. This objective also focuses on developing a method for acquiring and processing source data from suppliers. The cognitive goal is to analyse the spatial differentiation of theoretical and real travel times at different spatial scales. In terms of application, the focus is on the use of real travel time data for transport planning. Data on theoretical travel times includes the author’s own calculations based on analyses whose key assumption is that cars move on a road network at the maximum speeds allowed by the law with all other variables being excluded. The other source of data (on real travel times) is the Distance Matrix Response provided by Google Maps APIs. Due to methods such as isochrones and cumulative accessibility it was concluded that data obtained from Google servers is highly useful for research into transport geography, including time accessibility analyses. The patterns presented here however cannot be treated uncritically or used for unrestricted analysis. With regard to the cognitive goal, it should be emphasized that spatial variations in travel differences, resulting from theoretical and real variants for journeys between regional cities in Poland, between settlement units within one region, or within one of its large cities, are heterogeneous depending on the nature and length of the journey. Therefore, depending on the spatial extent of analysis, divergences in travel times should be expected.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bar-Gera H. (2007). Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel. Transportation research part c 15 pp. 380–391.

  • Bartosiewicz B. and Wiśniewski S. (2015). The Use of Modern Information Technology in Research on Transport Accessibility. Transport Problems 10(3) 87-98.

  • Becker R. A. Caceres R. Hanson K. Loh J. M. Urbanek S. Varshavsky A. and Volinsky C. (2011). Route classification using cellular handoff patterns. Proceedings of the 13th international conference on Ubiquitous computing 123-132 ACM.

  • Bottasso A. and Conti M. (2010). The productive effect of transport infrastructures: does road transport liberalization matter? Journal of Regulatory Economics 38(1) 27–48.

  • Bröcker J. Korzhenevych A. and Schürmann C. (2010). Assessing spatial equity and efficiency impacts of transport infrastructure projects. Transportation Research Part B: Methodological 44(7) 795-811.

  • Bruinsma F. and Rietveld P. (1998). The accessibility of European cities: theoretical framework and comparison approaches. Environment and Planning A 30 499–521.

  • Calabrese F. Colonna M. Lovisolo P. Parata D. and Ratti C. (2011). Real-time urban monitoring using cell phones: A case study in Rome. IEEE Transactions on Intelligent Transportation Systems 12(1) 141-151.

  • Chen N. (2004). Intra-national versus international trade in the European Union: why do national borders matter. Journal of International Economics 63(1) 93–118.

  • Cohen J.P. and Paul C.M. (2007). The impacts of transportation infrastructure on property values: a higher-order spatial econometrics approach. Journal of Regional Science 47(3) 457–478.

  • De Vries J.J. Nijkamp P. and Rietveldet P. (2009).Exponential or power distance-decay for commuting? An alternative specification. Environment and Planning A 41(2) 461–480.

  • Gao H. and Liu F. (2013). Estimating freeway traffic measures from mobile phone location data. European journal of operational research 229 252–260.

  • Guzik R. (2003). Przestrzenna dostępność szkolnictwa ponadpodstawowego w województwie małopolskim (Spatial accessibility of post-primary education in the Lesser Poland voivodship – in Polish). Kraków: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego.

  • Holl A. (2007). Twenty years of accessibility improvements. The case of the Spanish motorway building programme. Journal of Transport Geography 15(4) 286–297.

  • Ingram D.R. (1971). The concept of accessibility: a search for an operational form. Regional Studies 5(2) 101-107.

  • Iqbal M.S. Choudhury C.F. Wang P. and González M.C. (2014). Development of origin–destination matrices using mobile phone call data. Transportation research part c 40 63-74.

  • Komornicki T. Śleszyński P. Rosik P. and Pomianowski W. (2010). Dostępność przestrzenna jako przesłanka kształtowania polskiej polityki transportowej (Spatial accessibility as an indication of shaping the Polish transport policy – in Polish). Warszawa: Komitet Przestrzennego Zagospodarowania Kraju PAN.

  • Kotavaara O. Antikainen H. and Rusanenet J. (2011). Population change: and accessibility by road and rail networks: GIS and statistical approach to Finland 1970–2007. Journal of Transport Geography 19(4) 926–935.

  • Koźlak A. (2012). Dostępność transportowa a mobilność przestrzenna na rynku pracy w województwie pomorskim (Transport accessibility and spatial mobility on the labor market in the Pomeranian Voivodship – in Polish). In: Rosik P. and Wiśniewski R. editors Dostępność i mobilność w przestrzeni (Accessibility and mobility in space) Warszawa: Instytut Geografii i Przestrzennego Zagospodarowania PAN Ministerstwo Rozwoju Regionalnego 119-128.

  • Kwan M.P. (1998). Space–time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geographical Analysis 30(3) 191–216.

  • Neutens T. Schwanen T. Witlox F. and De Maeyer P. (2010). Equity of urban service delivery: a comparison of different accessibility measures. Environment and Planning A 42(7) 1613–1635.

  • Ortega E. López E. and Monzón A. (2012). Territorial cohesion impacts of high-speed rail at different planning levels. Journal of Transport Geography 24 130–141.

  • Pieters M. De Jong G. and Van der Hoorn T. (2012). Cross-border car traffic in Dutch mobility models. European Journal of Transport and Infrastructure Research 12(2) 167–177.

  • Rose G. (2007). Mobile phones as traffic probes: practices prospects and issues. Transport reviews a transnational transdisciplinary journal 26(3) 275-291.

  • Rosik P. Stępniak M. and Komornicki T. (2015). The decade of the big push to roads in Poland: Impact on improvement in accessibility and territorial cohesion from a policy perspective. Transport Policy 37 134-146.

  • Rosik P. (2012). Dostępność lądowa przestrzeni polski w wymiarze europejskim (Land accessibility of the Polish space in the European dimension – in Polish).Warszawa: Instytut Geografii i Przestrzennego Zagospodarowania PAN.

  • Spiekermann K. and Neubauer J. (2002). European accessibility and peripherality: concepts models and indicators. Stockholm: Nordregio.

  • Stępniak M. and Rosik P. (2013). Accessibility improvement territorial cohesion and spillovers: a multidimensional evaluation of two motorway sections in Poland. Journal of Transport Geography 31(2) 154-163.

  • Wiśniewski S. (2015). Zmiany dostępności miast województwa łódzkiego w transporcie indywidualnym w latach 2013-2015 (Changes in the accessibility to private transport of towns in Poland’s Łódź voivodship in the years 2013-2015 – in Polish). Przegląd Geograficzny 87(2) 321-341.

  • Wiśniewski S. (2016). Teoretyczna i rzeczywista wewnętrzna dostępność transportowa Łodzi (Theoretical and real internal transport accessibility of Łódź – in Polish). Prace i Studia Geograficzne 61(3) 95-108.

  • Wiśniewski S. (2017). Intraregional transport accessibility of Łódź province in terms of data on theoretical and real travel times. Archives of Transport System Telematics 10(1) 45-53.

Journal information
Impact Factor

CiteScore 2018: 1.11

SCImago Journal Rank (SJR) 2018: 0.218
Source Normalized Impact per Paper (SNIP) 2018: 0.591

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 132 4
PDF Downloads 99 82 3