Seed germination in Solidago ×niederederi (Asteraceae) and its parental species after two different fruit storage periods

Artur Pliszko 1  and Kinga Kostrakiewicz-Gierałt 2
  • 1 Department of Taxonomy, Phytogeography and Paleobotany, Institute of Botany, 31-501, Kraków, Poland
  • 2 Department of Plant Ecology, Institute of Botany, 31-512, Kraków, Poland


In this paper, we present preliminary results from the study on the effect of fruit storage period on seed germination in Solidago ×niederederi and its parental species (S. canadensis and S. virgaurea). We aimed to test the hypothesis that a long fruit storage period (i) reduces the final percentage and speed of seed germination, as well as (ii) increases the number of dead seeds among non-germinated ones. We used fruit samples collected in Kraków, southern Poland, in 2013 and 2016, designating two different fruit storage periods of 3.5 years and 0.5 years, under dry, room temperature conditions. Seeds of all the observed species presented remarkably higher final percentage of germination after the short storage period than after the long one. The seeds subjected to the short fruit storage period achieved significantly higher values of Timson’s index and coefficient of velocity, as well as significantly lower values of the mean germination time than samples subjected to the long fruit storage period. After the long storage period, a significantly higher number of dead seeds among non-germinated seeds was found in S. ×niederederi and S. virgaurea. The performed studies showing that the long fruit storage period led to low contribution of germinated seeds in S. ×niederederi and its parental species suggested that the longtime seed desiccation had a negative impact on final germination. Considering that the hybrid can be potentially cultivated for scientific, medicinal or ornamental purposes, the suggested fruit storage period, under dry, room temperature conditions, should be shorter than three years. However, we realize that the response to long storage may vary in different populations and, therefore, further investigations are needed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aghilian S., Khajeh-Hosseini M. & Anvarkhah S. 2014. Evaluation of seed storage potential in forty medicinal plant species. Intl. J. Agri. Crop. Sci. 7: 749-759.

  • Al-Mudaris M. A. 1998. Notes on various parameters recording the speed of seed germination. Der Tropenlandwirt. Beitr. Trop. Landwirtsch. Veterinarmed. 99: 147-154.

  • Baskin C. C. & Baskin J. M. 2014. Seeds: ecology, biogeography and evolution of dormancy and germination. 2nd ed. 1586 pp. Academic Press/Elsevier, San Diego, CA, USA.

  • Daehler C. C. & Carino D. A. 2001. Hybridization between native and alien plants and its consequences. In: J. L. Lockwood & M. L. McKinney (eds.). Biotic homogenization, pp. 81-102. Kluwer Academic/Plenum Publishers, New York, USA.

  • Gioria M. & Pyšek P. 2017. Early bird catches the worm: germination as a critical step in plant invasion. Biol. Invasions 19: 1055-1080.

  • Gudžinskas Z. & Petrulaitis L. 2016. New alien plant species recorded in the southern regions of Latvia. Bot. Lith. 22: 153-160.

  • Hay F. R. & Probert R. J. 2013. Advances in seed conservation of wild plant species: a review of recent research. Conserv. Physiol. 1: 1-11.

  • Karpavičienė B. & Radušienė J. 2016. Morphological and anatomical characterization of Solidago ×niederederi and other sympatric Solidago species. Weed Sci. 64: 61-70.

  • Kołodziej B. 2008. Effect of agrotechnical factors on the yield of goldenrod (Solidago virgaurea L. ssp. virgaurea). Herba Polonica 54: 28-34.

  • Migdałek G., Kolczyk J., Pliszko A., Kościńska-Pająk M. & Słomka A. 2014. Reduced pollen viability and achene development in Solidago ×niederederi Khek from Poland. Acta Soc. Bot. Pol. 83: 251-255.

  • Mishra D., Joshi S., Bisht G. & Pilkhwal S. 2010. Chemical composition and antimicrobial activity of Solidago canadensis Linn. root essential oil. J. Basic Clin. Pharm. 1: 187-190.

  • Nilsson A. 1976. Spontana gullrishybrider (Solidago canadensis × virgaurea) i Sverige och Danmark. Svensk Bot. Tidskr. 70: 7-16.

  • Orchard T. 1977. Estimating the parameters of plant seedling emergence. Seed Sci. Technol. 5: 61-69.

  • Pagitz K. 2016. Solidago ×niederederi (S. canadensis × S. virgaurea ssp. virgaurea) in the Eastern Alps. In: C. Ries & Y. Krippel (eds.). Biological invasions: interactions with environmental change. Book of abstracts. NEOBIOTA 2016 – 9th International Conference on Biological Invasions, pp. 194. Vianden, Luxembourg.

  • Pliszko A. 2013. A new locality of Solidago ×niederederi Khek (Asteraceae) in Poland. Biodiv. Res. Conserv. 29: 57-62.

  • Pliszko A. 2015. Neotypification of Solidago ×niederederi (Asteraceae). Phytotaxa 230: 297-298.

  • Pliszko A. & Kostrakiewicz-Gierałt K. 2017. Resolving the naturalization strategy of Solidago ×niederederi (Asteraceae) by the production of sexual ramets and seedlings. Plant. Ecol.

  • Pliszko A. & Zając M. 2016. Current and potential distribution of Solidago ×niederederi (Asteraceae) in Poland. In: C. Ries & Y. Krippel (eds.). Biological invasions: interactions with environmental change. Book of abstracts. NEOBIOTA 2016 – 9th International Conference on Biological Invasions, pp. 163. Vianden, Luxembourg.

  • Pliszko A. & Zalewska-Gałosz J. 2016. Molecular evidence for hybridization between invasive Solidago canadensis and native S. virgaurea. Biol. Invasions 18: 3103-3108.

  • Pradham B. K. & Badola H. K. 2012. Effect of storage conditions and storage periods on seed germination in eleven populations of Swertia chirayita: a critically endangered medicinal herb in Himalaya. Sci. World J., 9 pages.

  • Preacher K. J. 2001. Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence (computer software), 2001.

  • Pyšek P., Richardson D. M., Rejmánek M., Webster G. L., Williamson M. & Kirschner J. 2004. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53: 131-143.

  • Royal Botanic Gardens Kew, Seed Information Database (SID), version 7.1, 2017.

  • Qaderi M. M., Presti A. & Cavers P. B. 2005. Dry storage effects on germinability of Scotch thistle (Onopordum acanthium) cypselas. Acta Oecol. 27: 67-74.

  • Shaban M. 2013. Aging in orthodox seeds is a problem. Int. J. Adv. Biol. Biom. Res. 1: 1296-1301.

  • Stace C. A., Preston C. D. & Pearman D. A. 2015. Hybrid flora of the British Isles. 501 pp. Botanical Society of Britain and Ireland, Bristol.

  • Timson J. 1965. New method of recording germination data. Nature 207: 216-217.

  • Walck J. L., Baskin J. M. & Baskin C. C. 1997. A comparative study of the seed germination biology of a narrow endemic and two geographically-widespread species of Solidago (Asteraceae). 1. Germination phenology and effect of cold stratification on germination. Seed Sci. Res. 7: 47-58.

  • Werner P. A., Gross R. S. & Bradbury I. K. 1980. The biology of Canadian weeds: 45. Solidago canadensis L. Can. J. Plant Sci. 60: 1393-1409.


Journal + Issues