Topographic attributes and ecological indicator values in assessing the ground-floor vegetation patterns

Open access

Abstract

The paper discusses the question whether geographical information systems (GIS) and digital elevation models (DEM) are useful tools for studying correlations between topographic attributes of a given area, and vascular flora requirements reflected by ecological indicator values (EIVs). The model object was a 4-km-long gorge section of the Sopot river valley (80.5 ha), the Central Roztocze Highlands, South-East Poland. Species lists for 40 ca. 200-m-long and 100-350-m-wide sections, according to the river course, separately for the left and right riverbanks, were made. The analysis of the area was based on a 3-meter resolution DEM. We applied primary topographic attributes: slope, and planar, vertical, and total curvatures and also secondary topographic attributes: solar radiation (SRAD) and topographic wetness index (TWI), as well as other terrain characters: denivelation, total, flat and upslope area of each section. Using the multivariate analyses, we analysed relationships between weighted averages of EIVs for each species and topographic attributes.

The GIS and DEM became useful tools for the detection of patterns of species with different habitat requirements. The species number correlated positively with the total and flat area of a section and the TWI, while the denivelation, mean slope and upslope area had a reverse vector. Among the most frequent and abundant herb species, we found several spatial patterns of distribution, namely those of: Maianthemum bifolium, Carex remota, C. acutiformis, Filipendula ulmaria, Dryopteris filixmas, and Urtica dioica. The rarest species represented Ajuga genevensis, Scorzonera humilis, and Stachys palustris patterns.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Angiolini C. Nucci A. Frigniani F. & Landi M. 2011. Using multivariate analyses to assess effects of fluvial type on plant species distribution in a Mediterranean river. Wetlands 31: 167-177. http://dx.doi/org/10.1007/s13157-010-0118-7

  • Balkovič J. Kollár J. & Šimonovič V. 2012. Experience with using Ellenberg’s R indicator values in Slovakia: oli-gotrophic and mesotrophic submontane broad-leaved forests. Biologia sec. Botany 67: 474-482. http://dx.doi.org/10.2478/s11756-012-0027-8

  • Bergès L. Gègout J.-C. & Franc A. 2006. Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak (Quercus petraea Liebl.) stands in northern France. Ann. For. Sci. 63: 31-42. http://dx.doi.org/10.1051/forest:2005091

  • Beven K. & Kirkby N. 1979. A physically based variable contributing area model of basin hydrology. Hydro. Sci. Bull. 24: 43-69.

  • Burrough P. A. & McDonell R.A. 1998. Principles of Geographical Information Systems. 352 pp. Oxford University Press New York.

  • Crosti R. de Nicola C. Fanelli G. & Testi A. 2010. Ecological classification of beech woodlands in the Central Apennine through frequency distribution of Ellenberg indicators. Ann. Bot. n.s. 0: 97-104. Available: http://ojs.uniroma1.it/index.php/Annalidibotanica/article/view/9112/9052.pdf [01.06.2017].

  • Cousins S. A. O. & Lindborg R. 2004. Assessing changes in plant distribution patterns – indicator species versus plant functional types. Ecol. Ind. 4: 17-27. http://dx.doi.org/10.1016/j.ecolind.2003.11.002

  • Czarnecka B. & Chabudziński Ł. 2011. Vegetation landscapes of a small-scale river valley in the light of the GIS analysis. Probl. Landscape Ecol. 20: 293-299.

  • Czarnecka B. & Chabudziński Ł. 2014. Assessment of flora diversity in a minor river valley using ecological indicator values Geographical Information Systems and Digital Elevation Models. Cent. Eur. J. Biol. 9: 220-231. http://dx.doi/org/10.2478/s11535-013-0263-0

  • Czarnecka B. & Janiec B. 2001. Factors affecting the distribution and properties of forest soils in river breaks of Roztocze. Acta Agrophys. 50: 81-93.

  • Czarnecka B. & Janiec B. 2002. Przełomy rzeczne Roztocza jako modelowe obiekty w edukacji ekologicznej. 232 pp.+photos. Wyd. UMCS Lublin.

  • Czarnecka B. & Janiec B. 2006. Krajobrazy roślinne jako wyraz naturalnych i antropogenicznych przemian środowiska małych dolin rzecznych Roztocza. Probl. Ecol. Krajobr. 16: 171-184

  • Czarnecka B. Moszyńska U. & Fita K. 2001. Zbiorowiska leśne doliny Sopotu w granicach rezerwatu Czartowe Pole: stan aktualny i tendencje dynamiczne. Parki Nar. Rez. Przyr. 20: 63-87.

  • Czarnecka B. Rysiak A. & Chabudziński Ł. 2015. How a river course influences the species richness and ecological requirements on two opposite riverbanks in a forest area. Acta Soc. Bot. Pol. 84: 13-22. http://dx.doi.org/10.5586/asbp.2014.032

  • Diekmann M. 2003. Species indicator values as an important tool in applied plant ecology – a review. Basic Appl. Ecol. 4: 493-506. http://dx.doi.org/10.1078/1439-1791-00185

  • Dorner B. Lertzman K. & Fall J. 2002. Landscape pattern in topographically complex landscapes: issues and techniques for analysis. Landscape Ecol. 17: 729-743. http://dx.doi.org/10.1023/A:1022944019665

  • Ellenberg H. 1974. Zeigerwerte der Gefäßpfanzen Mittel-europas. Scr. Geobot. 9: 9-160.

  • Ellenberg H. Weber H. E. Dül R. Wirth V. Werner W. & Paulissen D. 1992. Zeigerwerte von Pflanzen Mitteleuropas. Scr. Geobot. 18: 1-248.

  • Ertsen A. C. D. Alkemade J. R. M. & Wassen M. J. 1998. Calibrating Ellenberg indicator values for moisture acidity nutrient availability and salinity in the Netherlands. Plant Ecol. 135: 113-124.

  • ESRI 2003. Arc View spatial analyst. Advanced spatial analysis using raster and vector data. Environmental System Research Institute Redlands.

  • Evans J. S. Oakleaf J. Cushman S. A. & Theobald D. 2014. An ArcGIS toolbox for surface gradient and geomorphometric modeling. Version 2.0-0. Available: http://evansmurphy.wix.com/evansspatial.pdf. [02.12.2015].

  • Fijałkowski D. 1973. Zespoły trawiasto-turzycowe rezerwatu krajobrazowego Czartowe Pole. Ann. UMCS s. C 28: 145-164.

  • Feldmeyer-Christe E. Ecker K. Küchler M. Graf U. & Waser L. 2007. Improving predictive mapping in Swiss mire ecosystems through re-calibration of indicator values. Appl. Veg. Sci. 10: 183-192. http://dx.doi.org/10.1111/j.1654-109X.2007.tb00516.x

  • Fitterer J. L. Nelson T. A. Coops N. C. & Wulder M. A. 2012. Modelling the ecosystem indicators of British Columbia using Earth observation data and terrain indices. Ecol. Indicat. 20: 151-162. http://dx.doi.org/10.1016/j.ecolind.2012.02.024

  • Francis R. A. Tibaldeschi P. & McDougall L. 2008. Fluvially-deposited large wood and riparian plant diversity Wetland Ecol. Manage. 16: 371-382. http://dx.doi/org/10.1007/s11273-007-9074-2

  • Franklin J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress Phys. Geogr. 19: 474-499. http://dx.doi.org/10.1177/030913339501900403

  • Fu P. & Rich P. M. 2002. A geometric solar radiation model with applications in agriculture and forestry. Comp. Electr. Agricult. 37: 25-35.

  • Gégout J.-C. Hervé J. -Ch. Houllier F. & Pierrat J.-C. 2003. Prediction of forest soil nutrient status using vegetation. J. Veg. Sci. 14: 55-62.

  • Godefroid S. & Dana E. D. 2007. Can Ellenberg’s indicator values for Mediterranean plants be used outside their region of definition? J. Biogeogr. 34: 62–68.

  • Grabs T. Seibert J. Bishop K. & Laudon H. 2009. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. J. Hydrol. 373: 15-23. http://dx.doi.org/10.1016/j.jhydrol.2009.03.031

  • Hengl T. 2006. Finding the right pixel size. Comp. Geosci. 32: 1283-1298. http://dx.doi.org/10.1016/j.cageo.2005.11.008

  • Hutchinson M. F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol. 106: 211-232. http://dx.doi.org/10.1016/0022-1694(89)90073-5

  • Janiec B. & Czarnecka B. 2001. The „Czartowe Pole” landscape reserve in Roztocze (SE Poland) in the light of interdisciplinary research. Ekol. (Bratislava) 20 Suppl. 4: 222-232.

  • Jolley R. L. Lockaby B. G. & Cavalcanti G. G. 2010. Changes in riparian forest composition along a sedimentation rate gradient. Plant Ecol. 210: 317-330. http://dx.doi/org/10.1007/s11258-010-9759-0

  • Kopecký M. & Čižkova Š. 2010. Using topographic wetness index in vegetation ecology: does the algorithm matter? Appl. Veg. Sci. 13: 450-459. http://dx.doi.org/10.1111/j.1654-109X.2010.01083.x

  • Kraak M. J. & Ormeling F. 2003. Cartography. Visualisation of geospatial data. 205 pp. Longnam Group UK.

  • Kumar L. Skidmore A. K. & Knowles E. 1997. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 11: 475-497. http://dx.doi.org/10.1080/136588197242266

  • Lawesson J. E. Fosaa A. M. & Olsen E. 2003. Calibration of Ellenberg indicator values for the Faroe Islands Appl. Veg. Sci. 6: 53-62. http://dx.doi.org/10.1111/j.1654-109X.2003.tb00564.x

  • Lepš J. & Šmilauer P. 2003. Multivariate analysis of ecological data using Canoco. Cambridge Univ. Press Cambridge.

  • Lyon J. & Sagers C. L. 1998. Structure of herbaceous plant assemblages in a forested riparian landscape Plant Ecol. 138: 1-16.

  • Matuszkiewicz J. 1977. Przegląd fitosocjologiczny zbiorowisk leśnych Polski. Cz. 4. Bory świerkowe i jodłowe. Phytocoenosis­ 6(3): 151-227.

  • Matuszkiewicz W. 2008. Przewodnik do oznaczania zbiorowisk­roślinnych Polski. In: J. B. Faliński (ed.). Vademecum Geobotanicum 3 537 pp. Wyd. Nauk. PWN Warszawa.

  • Mendas A. 2010. The contribution of the digital elevation models and geographic information systems in a watershed hydrologic research. Appl. Geomatics 2: 33-42. http://dx.doi.org/10.1007/s12518-010-0019-8

  • Mirek Z. Piękoś-Mirkowa H. Zając A. & Zając M. 2002. Flowering plants and pteridophytes of Poland. A checklist. In: Z. Mirek (ed.). Biodiversity of Poland 1 442 pp. W. Szafer Institute of Botany Polish Academy of Sciences Kraków.

  • Moelsund J. E. Arge L. Bøcher P. Dalgaard T. Odgaard M. V Nygaard B. & Svenning J-Ch. 2013. Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere 4: 1-26. http://dx.doi.org/10.1890/ES13-00134.1

  • Moore D. M. Lees B. G. & Davey S. M. 1991. A new method for predicting vegetation distributions using decision tree analysis in a geographic information systems. Environ. Manage. 15: 59–71. http://dx.doi.org/10.1007/BF02393838

  • Petřik P. & Wild J. 2006. Environmental correlates of the patterns of plant distribution at the meso-scale: a case study from Northern Bohemia (Czech Republic). Preslia 78: 211-234.

  • Pfeffer K. Pebesma E. J. & Burrough P. A. 2003. Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecol. 18: 759-776: http://dx.doi.org/10.1023/B:LAND.0000014471.78787.d0

  • Sarr D. A. Hibbs D. E. & Huston M. A. 2005. A hierarchical perspective of plant diversity. Quart. Rev. Biol. 80: 187-212. http://dx.doi.org/10.1086/433058

  • Schaffers A. P. & Sýkora K. V. 2000. Reliability of Ellenberg indicator values for moisture nitrogen and soil reaction: a comparison with field measurements J. Veg. Sci. 11: 225-244. http://dx.doi.org/10.2307/3236802

  • Seidling W. 2005. Ground floor vegetation assessment within the intensive (Level II) monitoring of forest ecosystems in Germany: chances and challenges. Eur. J. Forest Res. 124: 301-312. http://dx.doi.org/10.1007/s10342-005-0087-1

  • Seidling W. & Fischer R. 2008. Deviances from expected Ellenberg indicator values fornitrogen are related to N throughfall deposition in forests. Ecol. Indic. 8: 639-646. http://dx.doi.org/10.1016/j.ecolind.2007.09.004

  • Sørensen R. Zinko U. & Seibert J. 2006. On the calculations of the topographic wetness index evaluation of different methods based on field observation. Hydrol. Earth Syst. Sci. 10: 101-112. http://dx.doi.org/10.5194/hess-10-101-2006

  • Tappeiner U. Tasser E. & Tappeiner G. 1998. Modelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS based model applied to an Alpine area. Ecol. Model. 113: 225-237. http://dx.doi.org/10.1016/S0304-3800(98)00145-8

  • Ter Braak C. J. F. & Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows. User’s guide: software for canonical community ordination (version 4.5). 491 pp. Microcomputer Power Ithaca.

  • Urbański J. 2012. GIS w badaniach przyrodniczych. Available: http://ocean.ug.edu.pl/~oceju/centrumGIS/dane/GIS_w_badaniach_przyrodniczych_12_2.pdf [01.06.2017].

  • van Dobben H. F. ter Braak C. J. F. & Dirkse G. M. 1999. Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. Forest Ecol. Manage. 114: 83-95. http://dx.doi.org/10.1016/S0378-1127(98)00383-1

  • Wamelink G. W. W. van Dobben H. F. & van der Eerden L. J. M. 1998. Experimental calibration of Ellenberg’s indicator value for nitrogen. Envir. Polution 102 S1: 371-375. http://dx.doi.org/10.1016/S0269-7491(98)80056-0

  • Wamelink G. W. W. Joosten V. van Dobben H. F. & Berendse F. 2002. Validity of Ellenberg indicator values judged from physico-chemical field measurements J. Veg. Sci. 13: 269-278. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02047.x

  • Werner K. J. & Zedler J. B. 2002. How sedge meadows soils microtopography and vegetation respond to sedimentation Wetlands 22: 451-466. http://dx.doi/org/10.1672/0277-5212(2002)022[0451:HSMSMA] 2.0.CO;2

  • Wilson J. P. & G allant J. C. (eds). 2000. Terrain analysis. Principles and applications. 520 pp. John Wiley & Sons New York.

  • Wilson S. McG. Pyatt D. G. Malcolm D. C. & Connolly T. 2001. The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests Forest. Ecol. Manage. 140: 101-116.

  • Zarzycki K. Trzcińska-Tacik H. Różański W. Szeląg Z. Wołek J. & Korzeniak U. 2002. Ecological indicator values of vascular plants of Poland. In: Z. Mirek (ed.). Biodiversity of Poland 2 183 pp. W. Szafer Institute of Botany Polish Academy of Sciences Kraków.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 104 7
PDF Downloads 92 79 6