The effect of soil and weather conditions on yields of winter wheat in multi-environmental trials

Marzena Iwańska 1  and Michał Stępień 1
  • 1 Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, 02-787, Warsaw, Poland

Summary

Drought reduces crop yields not only in areas of arid climate. The impact of droughts depends on the crop growth stage and soil properties. The frequency of droughts will increase due to climate change. It is important to determine the environmental variables that have the strongest effect on wheat yields in dry years. The effect of soil and weather on wheat yield was evaluated in 2018, which was considered a very dry year in Europe. The winter wheat yield data from 19 trial locations of the Research Center of Cultivar Testing (COBORU), Poland, were used. Soil data from the trial locations, mean air temperature (T) and precipitation (P) were considered as environmental factors, as well as the climatic water balance (CWB). The hydrothermal coefficient (HTC), which is based on P and T, was also used. The effect of these factors on winter wheat yield was related to the weather conditions at particular growth stages. The soil had a greater effect than the weather conditions. CWB, P, T and HTC showed a clear relationship with winter wheat yield. Soil data and HTC are the factors most recommended for models predicting crop yields. In the selection of drought-tolerant genotypes, the plants should be subjected to stress especially during the heading and grain filling growth stages.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ali M.B., El-Sadek A.N. (2016): Evaluation of drought tolerance indices for wheat (Triticum aestivum L.) under irrigated and rainfed conditions. Communications in Biometry and Crop Science. 11(1): 77–89.

  • Вabushkina E.A., Belokopytova L.V., Zhirnova D.F., Shah S.K., Kostyakova T.V. (2018): Climatically driven yield variability of major crops in Khakassia (South Siberia). International Journal of Biometeorology. 62(6): 939–948.

  • Baltas E. (2007): Spatial distribution of climatic indices in northern Greece. Meteorological Applications. 14:69–78.

  • Carew R., Smith E.G., Grant C. (2009): Factors influencing wheat yield and variability: Evidence from Manitoba, Canada. Journal of Agricultural and Applied Economics. 41(3): 625–639.

  • De Martonne E. (1925): Traité de Géographie Physique. 11. Paris, Colin.

  • FAO. (2018): World Food and Agriculture – statistical pocketbook 2018. Rome. 254 pp. Licence: CC BY-NC-SA 3.0 IGO.

  • García-León D., Contreras S., Hunink J. (2019): Comparison of meteorological and satellite-based drought indices as yield predictors of Spanish cereals. Agricultural Water Management 213: 388–396.

  • GUS (2018): Agriculture in 2017, Warsaw: 1-204. Available at: http://stat.gov.pl/en/topics/agriculture-forestry/agriculture/agriculture-in-2017,4,14.html (accessed 15.02.2019)

  • Hanson A.D., Nelsen C.E. (1980): Water: adaptation of crops to drought-prone environments. In P.S. Carlson ed. The Biology of Crop Productivity. Academic Press, New York: 77–152.

  • Yu H., Zhang Q., Sun P., Song C. (2018): Impact of Droughts on Winter Wheat Yield in Different Growth Stages during 2001–2016 in Eastern China. International Journal of Disaster Risk Science 9(3), 376–391.

  • Jadczyszyn J., Niedźwiecki J., Debaene G. (2016): Analysis of Agronomic Categories in Different Soil Texture Classification Systems. Polish Journal of Soil Science 49(1): 61–72.

  • Káš M., Mühlbachova G., Kusá H. (2019): Winter wheat yields under different soil-climatic conditions in a long-term field trial. Plant, Soil and Environment 65(1): 27–34.

  • Kuchar L., Iwanski S., Diakowska E., Gasiorek E. (2015): Symulacja warunków hydrotermicznych w północnej częsci centralnej Polski w perspektywie lat 20150-2060 dla potrzeb produkcji roślinnej i wybranych scenariuszy klimatycznych. Infrastruktura i Ekologia Terenów Wiejskich, (II/1).

  • Masante D., Barbosa P., McCormick N. (2018): EDO Analytical Report. Drought in Central-Northern Europe – July 2018.

  • Meier U. (1997): BBCH-Monograph. Growth Stages of Plants – Entwicklungsstadien von Pflanzen – Estadios de las plantas – Dévelopement des Plantes. Berlin and Wien, Blackwell Wissenschaftsverlag.

  • Mueller L., Schindler U., Mirschel W., Shepherd T.G., Ball B.C., Helming K., Wiggering H. (2010): Assessing the productivity function of soils. A review. Agronomy for Sustainable Development 30(3): 601–614.

  • Radzka E., Jankowska J. (2015): Wpływ warunków hydrotermicznych na plonowanie pszenicy jarej w środkowo-wschodniej Polsce (1975-2005). Acta Agrophysica 22(3).

  • Rane J., Pannu R.K., Sohu V.S., Saini R.S., Mishra B., Shoran J., Joshi A.K. (2007): Performance of yield and stability of advanced wheat genotypes under heat stress environments of the Indo-Gangetic plains. Crop Science 47(4): 1561–1573.

  • Rubel F., Kottek M. (2010): Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 19: 135-141. DOI: 10.1127/0941-2948/2010/0430 (accessed 05.06.2019).

  • Selyaninov G.T. (1937): Methods of climate description to agricultural purposes. In: Selyaninov GT (ed.) World climate and agriculture handbook. Gidrometeoizdat, Leningrad: 5–27

  • Senapati N., Stratonovitch P., Paul M.J., Semenov M.A. (2018): Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany.

  • Skowera B., Puła J. (2004): Skrajne warunki pluwiotermiczne w okresie wiosennym na obszarze Polski w latach 1971-2000. Acta Agrophysica. 3(1): 171–17 (in Polish).

  • Studnicki M., Derejko A., Wójcik-Gront E., Kosma M. (2019): Adaptation patterns of winter wheat cultivars in agro-ecological regions. Scientia Agricola 76(2): 148–156.

  • Svoboda M., Fuchs B.A. (2016): World Meteorological Organization (WMO) and Global Water Partnership (GWP): Handbook of Drought Indicators and Indices. Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series, 2.

  • Szewrański S., Kazak J., Żmuda R., Wawer R. (2017): Indicator-based assessment for soil resource management in the Wrocław larger urban zone of Poland. Polish Journal of Environmental Studies 26(5): 2239–2248.

  • Wheeler T.R., Craufurd P.Q., Ellis R.H., Porter J.R., Prasad P.V. (2000): Temperature variability and the yield of annual crops. Agriculture. Ecosystems and Environment 82(1-3): 159–167.

  • Wójcik-Gront E. (2018): Variables influencing yield-scaled Global Warming Potential and yield of winter wheat production. Field Crops Research 227: 19–29.

OPEN ACCESS

Journal + Issues

Search