Computing Bayes factors to measure evidence from experiments: An extension of the BIC approximation

Thomas J. Faulkenberry 1
  • 1 Department of Psychological Sciences, Tarleton State University, , Tarleton, USA

Summary

Bayesian inference affords scientists powerful tools for testing hypotheses. One of these tools is the Bayes factor, which indexes the extent to which support for one hypothesis over another is updated after seeing the data. Part of the hesitance to adopt this approach may stem from an unfamiliarity with the computational tools necessary for computing Bayes factors. Previous work has shown that closed-form approximations of Bayes factors are relatively easy to obtain for between-groups methods, such as an analysis of variance or t-test. In this paper, I extend this approximation to develop a formula for the Bayes factor that directly uses information that is typically reported for ANOVAs (e.g., the F ratio and degrees of freedom). After giving two examples of its use, I report the results of simulations which show that even with minimal input, this approximate Bayes factor produces similar results to existing software solutions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Borota D., Murray E., Keceli G., Chang A., Watabe J.M., Ly M., Yassa M.A. (2014): Post-study caffeine administration enhances memory consolidation in humans. Nature Neuroscience 17(2): 201-203. doi:

    • Crossref
    • Export Citation
  • Gigerenzer G. (2004): Mindless statistics. The Journal of Socio-Economics 33(5): 587-606. doi:

    • Crossref
    • Export Citation
  • Hoekstra R., Morey R.D., Rouder J.N., Wagenmakers E.J. (2014): Robust misinterpretation of confidence intervals. Psychonomic Bulletin & Review 21(5): 1157-1164. doi:

    • Crossref
    • Export Citation
  • Jeffreys H. (1961): The Theory of Probability (3rd ed.). Oxford, UK: Oxford University Press.

  • Lindley D.V. (1957): A statistical paradox. Biometrika 44(1-2): 187-192. doi:

    • Crossref
    • Export Citation
  • Masson M.E.J. (2011): A tutorial on a practical Bayesian alternative to nullhypothesis significance testing. Behavior Research Methods 43(3): 679-690. doi:

    • Crossref
    • Export Citation
  • Morey R.D., Rouder J.N. (2011): Bayes factor approaches for testing interval null hypotheses. Psychological Methods 16(4): 404-419. doi:

    • Crossref
    • Export Citation
  • Morey R.D., Rouder J.N. (2015): BayesFactor: Computation of Bayes factors for common designs [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=BayesFactor (R package version 0.9.12-2)

  • Raftery A.E. (1995): Bayesian model selection in social research. Sociological Methodology 25: 111-163. doi:

    • Crossref
    • Export Citation
  • Rouder J.N., Morey R.D., Speckman P.L., Province J.M. (2012): Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology 56(5): 356-374. doi:

    • Crossref
    • Export Citation
  • Rouder J.N., Speckman P.L., Sun D., Morey R.D., Iverson G. (2009): Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review 16(2): 225-237. doi:

    • Crossref
    • Export Citation
  • Sevos J., Grosselin A., Brouillet D., Pellet J., Massoubre C. (2016): Is there any influence of variations in context on object-affordance effects in schizophrenia? Perception of property and goals of action. Frontiers in Psychology 7: 1551. doi:

    • Crossref
    • Export Citation
  • Wagenmakers E.-J. (2007): A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review 14(5): 779-804. doi:

    • Crossref
    • Export Citation
  • Wang M. (2017): Mixtures of g-priors for analysis of variance models with a diverging number of parameters. Bayesian Analysis 12(2): 511-532. doi:

    • Crossref
    • Export Citation
OPEN ACCESS

Journal + Issues

Search