Clustering of Symbolic Data based on Affinity Coefficient: Application to a Real Data Set

Open access

SUMMARY

In this paper, we illustrate an application of Ascendant Hierarchical Cluster Analysis (AHCA) to complex data taken from the literature (interval data), based on the standardized weighted generalized affinity coefficient, by the method of Wald and Wolfowitz. The probabilistic aggregation criteria used belong to a parametric family of methods under the probabilistic approach of AHCA, named VL methodology. Finally, we compare the results achieved using our approach with those obtained by other authors.

References
  • Bacelar-Nicolau H. (1980): Contributions to the Study of Comparison Coefficients in Cluster Analysis, PhD Th. (in Portuguese), Univ. Lisbon.

  • Bacelar-Nicolau H. (1987): On the Distribution Equivalence in Cluster Analysis, Proc. of the NATO ASI on Pattern Recognition Theory and Applications, Springer- Verlag, New York, 1987: 73-79.

  • Bacelar-Nicolau H. (1988): Two Probabilistic Models for Classification of Variables in Frequency Tables. In: Classification and Related Methods of Data Analysis, H.-H. Bock (ed.), North Holland: Elsevier Sciences Publishers B.V.: 181-186.

  • Bacelar-Nicolau H. (2000): The Affinity Coefficient. In: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, H.-H. Bock and E. Diday (Eds.), Berlin: Springer-Verlag: 160-165.

  • Bacelar-Nicolau H. (2002): On the Generalised Affinity Coefficient for Complex Data. Biocybernetics and Biomedical Engineering 22(1): 31-42.

  • Bacelar-Nicolau H., Nicolau F.C., Sousa A., Bacelar-Nicolau L. (2009): Measuring Similarity of Complex and Heterogeneous Data in Clustering of Large Data Sets, Biocybernetics and Biomedical Engineering 29(2): 9-18.

  • Bacelar-Nicolau H., Nicolau F.C., Sousa A., Bacelar-Nicolau L. (2010): Clustering Complex Heterogeneous Data Using a Probabilistic Approach. Proceedings of Stochastic Modeling Techniques and Data Analysis International Conference (SMTDA2010), Chania Crete Greece, 8-11 June 2010 - published on the CD Proceedings of SMTDA2010 (electronic publication).

  • Bock H.-H., Diday E. (2000): Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Series: Studies in Classification, Data Analysis, and Knowledge Organization, Berlin: Springer- Verlag.

  • Chavent M., Lechevallier Y. (2002): Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance. In: Classification, Clustering, and Data Analysis, K. Jajuga, A. Sokolowski, H.-H. Bock (Eds.), Berlin: Springer-Verlag: 53-60.

  • Chavent M., De Carvalho F.A.T., Lechevallier Y., Verde R. (2003): Trois Nouvelles Méthodes de Classification Automatique de Données Symboliques de type intervalle, Revue de Statistique Appliquée, tome 51(4): 5-29.

  • De Carvalho F.A.T., Brito P., Bock H-H. (2006a): Dynamic Clustering for Interval Data Based on L2 Distance. Computational Statistics 21(2).

  • De Carvalho F.A.T., Souza R.M.C.R. de, Chavent M., Lechevallier Y. (2006b): Adaptive Hausorff Distances and Dynamic Clustering of Symbolic Interval Data. Pattern Recognition Letters 27(3).

  • Esposito F., Malerba D., Tamma V. (2000): Dissimilarity Measures for Symbolic Objects, In: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, H.-H. Bock and E. Diday (Eds.), Berlin: Springer-Verlag: 165-185.

  • Fraser D.A.S. (1975): Non Parametric Methods in Statistics. Chapman and Hall.

  • Lerman I.C. (1972): Étude Distributionelle de Statistiques de Proximité entre Structures Algébriques Finies du Même Type: Apllication à la Classification Automatique. Cahiers du B.U.R.O., 19, Paris.

  • Lerman I.C. (1981): Classification et Analyse Ordinale des Données, Paris: Dunod.

  • Matusita K. (1951): On the theory of Statistical Decision Functions, Ann. Instit. Stat. Math. III: 1-30.

  • Nicolau F.C. (1983): Cluster Analysis and Distribution Function. Methods of Operations Research 45: 431-433.

  • Nicolau F.C.m, Bacelar-Nicolau H. (1998): Some Trends in the Classification of Variables. In: Data Science, Classification, and Related Methods, C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.-H. Bock, Y. Baba (Eds.), Springer-Verlag: 89-98.

  • Nicolau F.C. (1983): Cluster Analysis and Distribution Function. Methods of Operations Research 45: 431-433.

  • Souza R.M.C.R. de, De Carvalho F.A.T. (2004): Clustering of interval data Based on City-Block distances, Pattern Recognition Letters 25: 353-365.

Biometrical Letters

The Journal of Polish Biometric Society

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 2 2 2