Determination and comparison of time under tension required to perform 8, 10 and 12-RM loads in the bench press exercise

Open access

Summary

Study aim: To determine and compare the time under tension (TUT) required to perform 8, 10 and 12 repetition maximum (RM) loads in the bench press exercise.

Material and methods: Twenty men (24.17 ± 4.69 years) were selected intentionally and properly. We included in the study physically active individuals, with a weekly frequency of physical activity of at least two days for six months, and excluded individuals with injury or pain that could interfere with the correct execution of the exercise and individuals with positive PAR-Q. The 10-RM test consisted in performing ten consecutive repetitions with maximum overload and the highest speed in bench press exercise on the Smith machine. After 48 h, 10-RM sets were performed with the load obtained in the 10-RM load testing. The TUT in 10-RM was verified through kinematics using the timing technique of the Kinovea software.

Results: The RM loads and TUT obtained during the retest session showed normal distribution between subjects. However, no significant differences were found between the loads 8, 10 and 12-RM within and between subjects (p < 0.05). The verified TUT showed a difference from 8 to 10-RM and from 8 to 12-RM, but no significant difference was found between TUT protocols for 10 and 12-RM (p < 0.05).

Conclusion: The study results enable evaluation of TUT in bench press exercise on the Smith machine for the study sample, allowing, for this group, the prediction and control of training intensity through the TUT.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. American College of Sports Medicine (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 41: 687-708. DOI: 10.1249/MSS.0b013e3181915670

  • 2. American College of Sports Medicine (2009) ACSM’s guidelines for exercise testing and prescription. 8th ed. Philadelphia: The Point.

  • 3. Balsalobre-Fernández C. C.M. Tejero-González J. Campo-Vecino N. Bavaresco (2014) The concurrent validity and reliability of a low-cost high-speed camera-based method for measuring the flight time of vertical jumps. J. Strength Cond. Res. 28: 528-533. DOI: 10.1519/JSC.0b013e318299a52e

  • 4. Bird S.P. K.M. Tarpenning F.E. Marino (2005) Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 35: 841-851.

  • 5. Bottaro M. S.N. Machado W. Nogueira R. Scales J. Veloso (2007) Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur. J. Appl. Physiol. 99: 257-264. DOI: 10.1007/s00421-006-0343-1

  • 6. Brentano M.A. E.L. Cadore E.M. Silva R.F. Silva L.F.M. Kruel (2008) Maximal strength estimation in resistance training exercises based on anthropometric parameters of physically active men and women. Braz. J. Biomotricity 2: 294-301.

  • 7. Burd N.A. R.J. Andrews D.W. West J.P. Little A.J. Cochran A.J. Hector J.G.A. Cashaback M.J. Gibala R. Potvin S.K. Baker S.M. Phillips (2012) Muscle time under tension during resistance exercise stimulates differential muscle protein subfractional synthetic responses in men. J. Physiol. 590: 351-362. DOI: 10.1113/jphysiol.2011.221200

  • 8. Candow D.G. D.G. Burke (2007) Effect of short-term equal-volume resistance training with different workout frequency on muscle mass and strength in untrained men and women. J. Strength Cond. Res. 21: 204-207. DOI: 10.1519/R-19785.1

  • 9. Chestnut J.L. D. Docherty (1999) The effects of 4 and 10 repetition maximum weight-training protocols on neuromuscular adaptations in untrained men. J. Strength Cond. Res. 13: 353-359.

  • 10. Conselho Nacional de Saúde (Brasil). Resolução nº 466 de 12 de dezembro de 2012. Diário Oficial da União Brasília DF n. 12 p. 59 jun. 2013.

  • 11. Fleck S.J. W.J. Kraemer (2014) Designing resistance training programs. 4th ed. Champaign IL: Human Kinetics.

  • 12. Garber C.E. B. Blissmer M.R. Deschenes B.A. Franklin M.J. Lamonte I.M. Lee D.C. Nieman D.P. Swain (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory musculoskeletal and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43: 1334-1359. DOI: 10.1249/MSS.0b013e318213fefb

  • 13. Gentil P. E. Oliveira M. Bottaro (2006) Time under tension and blood lactate response during four different resistance training methods. J. Physiol. Anthropol. 25: 339-344.

  • 14. Jackson A.S. M.L. Pollock (1978) Generalized equations for predicting body density of men. Br. J. Nutr. 40: 497-504.

  • 15. Keeler L.K. L.H. Finkelstein W. Miller B. Fernhall (2001) Early-phase adaptations of traditional-speed vs superslow resistance training on strength and aerobic capacity in sedentary individuals. J. Strength Cond. Res. 15: 309-314.

  • 16. Kraemer W.J. N.A. Ratamess (2004) Fundamentals of resistance training: progression and exercise prescription. Med. Sci. Sports Exerc. 36: 674-688.

  • 17. Lacerda L.T. H.C. Martins-Costa R.C. Diniz F.V. Lima A.G. Andrade F.D. Tourino M.G. Bemben M.H. Chagas (2016) Variations in repetition duration and repetition numbers influence muscular activation and blood lactate response in protocols equalized by time under tension. J. Strength Cond. Res. 30: 251-258. DOI: 10.1519/JSC.0000000000001044

  • 18. Lamas L. C. Ugrinowitsch G.E.R. Campos M.S. Aoki R. Fonseca M. Regazzini A.S. Moriscot V. Tricoli (2007) Strength training x power training: performance changes and morphological adaptations. Rev. Bras. Educ. Fís. Esp. 21: 331-340.

  • 19. MacDougall J.D. (1986) Adaptability of muscle to strength training: a cellular approach. In: B. Saltin (ed.) Biochemistry of exercise VI. Champaign IL: Human Kinetics. pp. 501-513.

  • 20. Marfell-Jones M. T. Olds A. Stewart L. Carter (2006) International standards for anthropometric assessment. Potchefstroom South Africa: ISAK.

  • 21. Marques G.C.O. M.A. Brentano L.F.M. Kruel (2009) Estimativas da força máxima dinâmica através de coeficientes e de análise de regressão linear baseado em parâmetros antropométricos de homens destreinados em força. Rev. Bras. Educ. Fís. Esporte 23: 171-181. DOI: http://dx.doi.org/10.1590/S1807-55092009000200007

  • 22. Miller A.E.J. J.D. MacDougall M.A. Tarnopolsky D.G. Sale (1993) Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 66: 254-262.

  • 23. Munn J. R.D. Herbert M.J. Hancock S.C. Gandevia (2005) Resistance training for strength: effect of number of sets and contraction speed. Med Sci. Sports Exer. 37: 1622-1626.

  • 24. Neils C.M. B.E. Udermann G.A. Brice J.B. Winchester M.R. McGuigan (2005) Influence of contraction velocity in untrained individuals over initial early phase of resistance training. J. Strength Cond. Res. 19: 883-887. DOI: 10.1519/R-15794.1

  • 25. Ramalho G.H.R.O. M.L. Mazini Filho B.M. Rodrigues G.R.O. Venturini R.S. Salgueiro R.L. Pace Júnior D.G. Matos (2011) The 1RM testing for prediction of load in hypertrophy training and its relation with maximum number of repetitions. Braz. J. Biomotricity 5: 168-174.

  • 26. Sakamoto A. P. Sinclair (2006) Effect of movement velocity on the relationship between training load and number of repetitions of bench press. J. Strength Cond. Res. 20: 523-527. DOI: 10.1519/16794.1

  • 27. Santiago F.L.S. G.A. Paz M.F. Maia P.S. Santos A.T.L. Santos V.P. Lima (2012) Strength of maximum repetitions and tension time on leg press after stactic elongation in extensor and flexor knee. Rev. Bras. Prescr. Fisiol. Exerc. 6: 3-9.

  • 28. Shephard R.J. (1988) PAR-Q: Canadian home fitness test and exercise screening alternatives. Sports Med. 5: 185-195.

  • 29. Spagnol A.R. O.C.M. Malheiro R.C. Castoldi D.G. Moret R.G. Araújo M. Papoti R.C.T. Camargo J.C.S. Camargo Filho (2012) Análise da plasticidade muscular de ratos submetidos a um protocolo de treinamento físico concorrente. Rev Bras Ciênc Mov. 20: 118-124. DOI: http://dx.doi.org/10.18511/rbcm.v20i3.3607

  • 30. Tanimoto M. N. Ishii (2006) Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J. Appl. Physiol. 100: 1150-1157. DOI: 10.1152/japplphysiol.00741.2005

  • 31. Thomas J.R. J.K. Nelson S.J. Silverman (2012) Métodos de pesquisa em atividade física. 6th ed. Rio de Janeiro: Artmed.

  • 32. Watanabe Y. M. Tanimoto A. Ohgane K. Sanada M. Miyachi N. Ishii (2013) Increased muscle size and strength from slow-movement low-intensity resistance exercise and tonic force generation. J. Aging Phys. Act. 21: 71-84.

  • 33. Wernbom M. J. Augustsson R. Thomeé (2007) The influence of frequency intensity and volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 37: 225-264.

  • 34. Westphal M. R.R. Batista A.R. Oliveira (2006) Relationship between body mass lean body mass cross sectional area and 1 RM in women. Rev. Bras. Cineantropom. Desempenho Hum. 8: 52-57.

  • 35. World Medical Association (1989) Declaration of Helsinki. Recommendation guiding physicians in biomedical research involving human subjects. Java. 227: 925-926.

Search
Journal information
Impact Factor


CiteScore 2018: 0.38

SCImago Journal Rank (SJR) 2018: 0.144
Source Normalized Impact per Paper (SNIP) 2018: 0.432

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 498 149 9
PDF Downloads 257 95 7