Electronic and Thermoelectric Properties in Li-Based Half-Heusler Compounds: A First Principle Study


In this paper, we performed a first principle study for new half-Heusler LiSrX(X= N, P, and As) working with WIEN2k code in the frame work of the density functional theory, and the Boltzmann theory. We estimated the exchange-correlation potential by the generalized gradient approximation (GGA). Energetically, the three compounds show a high stability in structure type2, we notice that the lattice constant increased while bulk modulus decreased in replacing the ions of size increasing. Based on our calculations, LiSrN, LiSrP, and LiSrAs compounds are mechanically stable, and show semiconductor nature with indirect band gaps of 1.21, 1.75 for LiSrN and LiSrAs, and direct band gap of 1.94 eV for LiSrP. The thermoelectric properties are calculated for LiSrX (X=N, P, and As) and they found a high power factor for the p-type doping concentration.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hem Chandra Kandpal, Claudia Felser and Ram Seshadri, J. Phys. D: Appl. Phys. 39 (2006) 776–785

  • [2] S. Kacimi, H. Mehnane, A. Zaoui, Journal of Alloys and Compounds 587 (2014)451-458

  • [3] F. Casper, T. Graf, S. Chadov, B. Balkeand, and C. Felser, Semicond. Sci.Technol. 27 (2012) 063001

  • [4] L. Damewood, B. Busemeyer, M. Shaughnessy, C. Y. Fong, L. H. Yang, and C. Felser, Phys. Rev. B 91(2015) 064409

  • [5] Thomas Gruhn, Physical Review B82 (2010)125210

  • [6]Anindya Roy, Joseph W. Bennett, Karin M. Rabe, and David Vanderbilt, Physical Review Letters 109, (2012)037602

  • [7] R. Umamaheswari, M. Yogeswari, G. Kalpana, Journal of Magnetism and Magnetic Materials 350(2014)167

  • [8] Shah, S. H., Khan, S. H., Laref, A., and Murtaza, G. Journal of Solid State Chemistry, 258(2018) 8008

  • [9] Ahmed, R., Masuri, N. S., UlHaq, B., Shaari, A., Alfaifi, S., Butt, F. K., and all. Materials and Design 136(2017)196

  • [10] Barth, J., Fecher, G. H., Schwind, M., Beleanu, A., Felser, C., Shkabko, A., and all. Journal of Electronic Materials 39 (2010)1856

  • [11] Deepika Shrivastava, Sankar P. Sanyal, Journal of Alloys and Compounds 784 (2019)319

  • [12] R. W. G. Wyckoff, Crystal Structures, 2nd ed., Vol. 1(John Wiley & Sons, (1963)

  • [13] Madsen G.K.H., Blaha P., Schwarz K., Sjöstedt E., Nordström L., Phys. Rev. B, 64 (2001) 195134

  • [14] Schwarz K., Blaha P., Madsen G. K. H., Comput. Phys. Commun., 147 (2002) 71

  • [15] Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D., Luitz J., Wien2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz/Techn. Universität Wien, Austria, (2001)

  • [16] Perdew J.P., Burke K., Ernzerhof M., Phys. Rev. Lett., 77 (1996) 3865

  • [17] G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175 (1) (2006) 67

  • [18] F. Birch, J. Appl. Phys. 9 (1938) 279

  • [19] M. Jamal, S.J. Asadabadi, I. Ahmad, H.R. Aliabad, Comput. Mater. Sci. 95 (2014) 592

  • [20] S. Wang, H. Ye, Phys. Status Solidi 240 (2003) 45

  • [21] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, P. Schmidt, Intermetallic 11 (2003) 23

  • [22] A. Maachou, H. Aboura, B. Amrani, R. Khenata, S.B. Omran, D. Varshney,Comput. Mater. Sci. 50 (2011)3123

  • [23] M. Hachemaoui, R. Khenata, A. Bouhemadou, A.H. Reshak, D. Rached, F. Semari, Curr. Opin. Solid State Mater. Sci. 13 (2009)105

  • [24] A. Bouhemadou, R. Khenata, Phys. Lett. A. 362(2007)476

  • [25] D. M. Hoat, J.F. R. Silva, A.M. Blas, Mater. Res. Express 5 (6) (2018)066549

  • [26] D.M. Teter, MRS Bull. 23 (1998) 22.

  • [27] S. F. Pugh, the London, Edinburgh and Dublin Philosophical Magazine and, J. Sci. 45 (1954) 823.

  • [28] Bejan, A. & Allan, A. D. Heat Transfer Handbook (Wiley, New York, 2003), p. 1338


Journal + Issues