Electric Properties of NaTaO3 Obtained by Hydrothermal Method

Open access

Abstract

Two samples of NaTaO3 perovskite materials were prepared by the standard hydrothermal method at the same reaction temperature (600 °C) but with different sintering times: 6 hours for sample S1 and 12 hours for sample S2.

Using X-ray diffraction (XRD), it shows that samples S1 and S2 are mixtures of Na-Ta oxides (Ta2O5 and the prevailing phase NaTaO3). The scanning electron microscopy analysis (SEM), shows that the grains are connected each other in agglomerated clusters of size about few hundred nanometers.

The frequency (f) dependencies of complex impedance, Z(f) = Z’(f) - i Z’’(f) of the samples, over the frequency range 20 Hz - 2 MHz, at room temperature are presented. The real component Z’ of the complex impedance decreases with increasing frequency and the imaginary component Z’’ has two maximum corresponding to two relaxation processes.

The results obtained from the complex impedance spectroscopy, Z’’(Z’) showed the appearance of two semicircles, corresponding to grain and grain boundary mechanism. Experimental results have been fitted with two parallel RC equivalent circuits connected in series and the parameters R and C have been evaluated.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] L. G. Tejuca Properties and applications of perovskite-type oxides Dekker New York 1993 382.

  • [2] N. Setter J. Eur. Ceram. Soc. 21 (2001) 1279.

  • [3] Wilfried Wunderlich Journal of Nuclear Materials 389 (2009) 57-61.

  • [4] Wilfried Wunderlich and Susumu Soga Journal of Ceramic Processing Research vol II nr. 2 (2010) 233-236.

  • [5] Kato H and Kudo A Catalysis Today 78 (2003) 561

  • [6] X. Li J.L. Zang Catalysis Communications 12 (2011) 1380-1383

  • [7] N. Wang C. Q. Zhang H. C. He et. al. Powder Technol. 205 (2011) 61-64

  • [8] P. Vousden Acta Crystallogr. 4 (1951) 373

  • [9] Suchismita Mohanty R.N.P. Choudharyn R. Padhee B.N. Parida Ceramics International 40 (2014) 9017-9025

  • [10] J.A. Nelson M.J. Wagner Journal of the American Chemical Society 125 (2003) 332-333

  • [11] Y. He Y. Zhu Chemistry Letters 33 (2004) 900-901

  • [12] A. J. Bard L. R. Faulkner Electrochemical Methods: Fundamentals and Applications John Wiley and Sons Publishers New York 2001.

  • [13] M. M. Rashad Materials Science & Engineering B 127 2-3 (2006) 123-129

  • [14] O. Vázquez-Cuchillo A. Manzo-Robledo R. Zanella N. Elizondo- Villareal A. Cruz- López Ultrason. Sonochem. 20 (2013) 498-501.

  • [15] Suchismita Mohanty R.N.P. Choudharyn R. Padhee B.N. Parida Ceramics International 40 (2014) 9017-9025

  • [16] Khalid Mujasam Batoo Physica B 406 (2011) 382-387

  • [17] S. Khadhraoui A.Triki S.Hcini S.Zemni M.Oumezzine J.Magn. Magn. Mater. 371 (2014) 69-76

  • [18] B. K. P. Scaife Principles of dielectrics Clarendon Press - Oxford 1998

  • [19] N. SivaKumar A. Narayanasamy K. Shinoda C.N. Chinnasamy B. Jeyadevan J.M.Greneche J. Appl. Phys. 102 (2007) 013916.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 80 9
PDF Downloads 96 45 12