Nonthermal Argon Plasma Generator and Some Potential Applications

Open access


A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator’s body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%), equipped with a OT-1000 (Tungsram) power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] T. J. M. Boyd and J. J. Sanderson “The physics of plasmas” Cambridge University Press Cambridge (2003)

  • [2] I. Bica “The Physics and the Technology of Materials in Plasma” Mirton Press Timisoara (2005)

  • [3] I. Bica Rev. de Sold. Spain 26 (1996) 191-200

  • [4] I. Bica J. Ind. Eng. Chem. 14 (2008) 230-235

  • [5] I. Bica J. Ind Eng. Chem. 15 (2009) 304-315

  • [6] R. Hippler S. Pfan and M. Schmidt “Low temperature plasma physics: fundamental aspects and applications” Wiley VCH Berlin (2001)

  • [7] J. Reece Roth “Industrial Plasma Engineering vol. 2; Applications to nonthermal plasma processing” IOP Publishing Ltd Cornwall UK (2001)

  • [8] R. d’Agostino P. Favia Y. Kawei H. Ikegami N. Sato and F. Arefi-Khonsari “Advanced Plasma Technology” Wiley-VCH Verlag GmbH&Co K Cron A Weinheim (2008)

  • [9] M. Thiyagarajan I. Alexeff S. Parameswaran and S. Beebe IEEE Transactions on Plasma Science 33 (2005) 322-323

  • [10] J. Grabarczyk and I. Kotela Journal of Achievements in Materials and Manufacturing Engineering 37 (2009) 277-280

  • [11] G.-Ch. Kim H. J. Lee and C.- H. Shon Journal of the Koreean Physical Society 54 (2009) 628-632

  • [12] R. E. J. Sladek E. Stoffels R.Walraven P. J. A. Tielbeek and R. A. Koolhoren IEEE Transactions on Plasma Science 32 (2004) 1540-1543

  • [13] S. D. Anghel I Frentin and A. Simon The Open Plasma Physics Journal 2 (2009) 8-16

  • [14] M. Laroussi M. G. Kong G. Morfill and W. Stolz Eds. „Plasma Medicine-Applications of Low-Temperature Gas Plasmas in Medicine and Biology” University Press Cambridge (2012)

  • [15] S.K. Pankaj C. Bueno-Ferrer N.N. Misra V. Milosavljević C.P. O'Donnell P. Bourke K.M. Keener P.J. Cullen Trends in Food Science & Technology 35(1) (2014) 5-17

  • [16] N. Gherbanovschi Gh. Petrescu "Inductive Plasma" (in Romanian) RSR Academy Press Bucharest (1983)

  • [17] S. Pekárek Acta Polytechnica 43 (2003) 47-51

  • [18] P. L. F. Giangrande Brit. J. Haematology 121 (2003) 703-712

  • [19] S. U. Kalghatgi G. Fridman M. Cooper G. Nagaraj M. Peddinghaus M.Balasubramanian V. N. Vasilets A. F. Gutsol A. Fridman and G. Friedman IEEE Transactions on Plasma Science 35 (2007) 1559-1565

  • [20] R. Morent N. De Geyter J.Verschuren K. De Clerck P. Kiekens and C. Leys Surface & Coatings Technology 202 (2008) 3427-3449

  • [21] T. Yamamoto M. Okubo N. Imai and Y. Mori Plasma Chemistry and Plasma Processing 24 (2004) 1-12

  • [22] T. Desmet R. Morent N. De Geyter C. Leys E. Schacht and P. Dubruel Biomacromolecules 10(9) (2009) 2351-2378

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 48 2
PDF Downloads 94 42 1