The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures

Mihai Lungu 1 , Raluca Giugiulan 1 , Antoanetta Lungu 1 , Madalin Bunoiu 1  und Adrian Neculae 1
  • 1 West University of Timisoara, Faculty of Physics, Bd. V. Parvan, no.4, 300223 Timisoara, Romania


This paper investigates the possibility to improve the filtering process of flue gas by separation of suspended nanoparticle using dielectrophoresis. The study focuses on the particles having an average radius of about 50-150 nm, that cannot be filtrated by classical techniques but have a harmful effect for environment and human health. The size distribution nanoparticles collected from the flue gas filters of a hazardous waste incinerator plant were evaluated. Based on obtained experimental data and a proposed mathematical model, the concentration distribution of nanoparticle suspended in flue gas inside a microfluidic separation device was analyzed by numerical simulations, using the finite element method. The performances of the device were described in terms of three new specific quantities related to the separation process, namely Recovery, Purity and Separation Efficiency. The simulations could provide the optimal values of control parameters for separation process, and aim to be a useful tool in designing microfluidic devices for separating nanoparticle from combustion gases.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] F. Sbrizzaia, P. Faraldib, A. Soldatia, Chem. Eng. Sci. 60 (2005) 6551.

  • [2] D. Rickerby, M. Morrison, Report from the workshop on nanotechnologies for environmental remediation, JRC Ispra. (2007).

  • [3] P. Minutolo, L. Sgro, M. Costagliola, M. Prati, M. Sirignano, A. D’Anna, Chem. Eng. Trans. 22 (2010) 239.

  • [4] M. Chang, C. Huang, J. of Environ. Eng. 127 (2001) 78.

  • [5] M. Lungu, A. Neculae, M. Bunoiu, J. of Optoelectronics and Advanced Materials 12 (2010) 2423.

  • [6] R. Pethig, Biomicrofluidics 4 (2010) 022811.

  • [7] A. Neculae, C. Biris, M. Bunoiu, M. Lungu, J. Nano. Res. 14 (2012) 1.

  • [8] N. G. Green, A. Ramos, H. Morgan, J. Elstat. 56 (2002) 235.

  • [9] C. Barbaros, L. Dongqing, Electrophoresis 32 (2011) 2410.

  • [10] S. Shklyaev, A. Straube, New J. Phys. 10 (2008) 1.

  • [11] I. Malaescu, R. Giugiulan, M. Lungu, N. Strambeanu, Romanian Journal of Physics 59 (2014) 7.

  • [12] A. Neculae, R. Giugiulan, M. Bunoiu, M Lungu, Rom. Rep. Phys. 66 (2014) 3.


Zeitschrift + Hefte