The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures

Open access

Abstract

In this paper we discuss interplays between the Aharonov-Bohm effect and the transport properties in mesoscopic ring structures based on graphene. The interlayer interaction leads to a change of the electronic structure of bilayer graphene ring such that the electronic energy dispersion law exhibits a gap, either by doping one of the layers or by the application of an external perpendicular electric field. Gap adjustments can be done by varying the external electric field, which provides the possibility of obtaining mesoscopic devices based on the electronic properties of bilayer graphene. This opens the way to controllable manipulations of phase-coherent mesoscopic phenomena, as well as to Aharonov-Bohm oscillations depending on the height of the potential step and on the radius of the ring. For this purpose one resorts to a tight-binding model such as used to the description of conductance.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] K. S. Novoselov A. K. Geim S. V. Morozov D. Jiang Y. Zhang S. V. Dubonos I.V. Grigorieva A. A. Firsov Science 306 (2004) 666.

  • [2] C. Berger Z. Song T. Li X. Li A. Y. Ogbazghi R. Feng Z. Dai A. N. Marchenkov E. H. Conrad P. N. First W. A. de Heer J. Phys. Chem. B 108 (2004) 19912.

  • [3] C. Berger Z. Song X. Li X. Wu N. Brown C. Naud D. Mayou T. Li J. Hass A. N. Marchenkov E. H. Conrad P. N. First W. A. de Heer Science 312 (2006) 1191.

  • [4] X. Li X. Wang L. Zhang S. Lee H. Dai Science 319 (2008) 1229.

  • [5] L. Ci Z. Xu L. Wang W. Gao F. Ding K.F. Kelly B. I. Yakobson P. M. Ajayan Nano Res. 1 (2008) 116.

  • [6] Z. Jiang E. A. Henriksen L. C. Tung Y.-J. Wang M. E. Schwartz M. Y. Han P. Kim and H. L. Stormer Phys. Rev. Lett. 98 (2007) 197403.

  • [7] C. Neto et al Phys World 105 (2006) 33.

  • [8] Y. W. Son M. L. Cohen M L and S. G. Louie Phys. Rev. Lett. 97 (2006) 216803.

  • [9] M. I. Katsnelson 2 Graphene: Carbon in Two Dimensions Cambridge University Press (2012).

  • [10] J. W. González and M. Pacheco L. Rosales P. A. Orellana Phys. Rev. B 83 (2011) 155450.

  • [11] P.R.Wallace Physical Review 71 (1947) 622.

  • [12] E.Papp C. Micu Low dimensional nanoscale systems on discrete spaces World Scientific Singapore (2007).

  • [13] J. Schelter P. Recher B. Trauzettel Solid State Communications 152 1411 (2012).

  • [14] H. Bluhm N. C. Koshnick J. A. Bert M. E. Huber K. A. Moler Phys. Rev. Lett. 102 (2009) 136802.

  • [15] I. Romanovsky C. Yannouleas U. Landman Phys. Rev. B 85 (2012) 165434.

  • [16] J.T. Chakraborty P. Pietilainen Phys. Rev.B 50 (1994) 8460.

  • [17] R. Okuyama M. Eto H. Hyuga Phys. Rev. B 83 (2011) 195311.

  • [18] P. Recher B. Trauzettel A. Rycerz Y. M. Blanter C.W. J.Beenakker A. F. Morpurgo Phys. Rev. B 76 (2007) 235404.

  • [19] S. Datta Quantum Transport: Atom to Transistor Cambridge University Press New York 2005.

  • [20] H. F. Cheung Y. Gefen E. K.Riedel W. H. Shih Phys. Rev.B 37 (1988) 6050.

  • [21] E. Papp C. Micu L. Aur D. Racolta Physica E 36 (2007) 178.

  • [22] J. W. G. Wildoer L. C. Venema A. G. Rinzler R. E. Smalley C. Dekker Nature (London) 391 (1998) 59.

  • [23] A. M. Rao E. Richter S. Bandow B. Chase P. C. Eklund K. A. Williams S. Fang S. Subbaswamy K. R. Menon M. Thess et al. Science 275 (1997) 187.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 98 0
PDF Downloads 83 55 2