Comparison Between Measurements and WRF Numerical Simulation of Global Solar Irradiation in Romania


The paper presents a comparative analysis between the surface global irradiation measured for Romania and the predicted irradiation obtained by numerical simulation. The measured data came from the Romanian National meteorological Administration. Based on a preliminary analysis that took into account several criteria among which, performance, cost, popularity and meteorological and satellite data accessibility we concluded that a combination GFS-WRF(NMM) or GFS-WRF(ARW) is most suitable for short term global solar irradiation forecasting in order to assess the performance of the photovoltaic power stations (Badescu and Dumitrescu, 2012, [1], Martin et al., 2011, [2]).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] V. Badescu and A. Dumitrescu, "Testing Magicsol under the climate and latitudes of Romania", COST Action ES1002 "WIRE", Workshop on Remote Sensing Measurements for Renewable Energy, Technical University of Denmark DTU, Wind Energy Department Riso campus, Roskilde, Denmark, May 22-23, 2012.

  • [2] L. Martin, L. F. Zarzalejo, J. Polo, A. Navarro, R. Marchante, M. Cony, "Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning", Solar Energy, 84 (2010) 1772-1781,

  • [3] D. Heinemann, E. Lorenz and M. Girodo, Forecasting of solar radiation in: Dunlop, E.D., Wald, L., Suri, M. (Eds.), Solar Energy Resource Management for Electricity Generation from Local Level to Global Scale. Nova Science Publishers, Hauppauge, 2006.

  • [4] A. Mellit and A.M. Pavan, Sol. Energy 84 (5) (2010) 807-821.

  • [5] IEA, Energy Technologies at the Cutting Edge, International Energy Agency, OECD Publication Service, OECD, Paris, 2007.

  • [6] G. Grell, J. Dudhia, and D. Stauffer, "A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)", NCAR Tech. Note, NCAR/TN-398+STR, USA, 1998.

  • [7] R.J. Zamora, E.G. Dutton, M. Trainer, S.A. McKeen, J.M. Wilczak, Y.T. Hou, Mon. Weather Rev. 133 (2005) 783-792.

  • [8] R.J. Zamora, S. Solomon, E.G. Dutton, J.W. Bao, M. Trainer, R.W. Portmann, A.B. White, D.W. Nelson, R.T. McNider, J. Geophys.Res. 108 (D2) (2003) 4050.

  • [9] E. Lorenz, J. Remund, S.C. Muller, W. Traunmuller, G. Steinmaurer, D. Pozo, J.A. Ruiz- Arias, V.L. Fanego, L. Ramirez, M.G. Romeo, C. Kurz, L.M. Pomares, C.G. Guerrero, Benchmarking of different approaches to forecast solar irradiance. In: 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-25 September 2009.

  • [10] E. Lorenz, J. Hurka, D. Heinemann, H.G. Beyer, IEEE J. Selected Topics Appl. Earth Observations Remote Sens. 2 (1) (2009).

  • [11] R. Remund, Y. Perez, E. Lorenz, Comparison of solar radiation forecasts for the USA. In: Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, (2008) 1.9-4.9.

  • [12] Y. Perez and F.J. Ramos-Real, Renew. Sust. Energy Rev., 13, 1058-1066, 2009.

  • [13] J.A. Ruiz-Arias, D. Pozo-Vazquez, N. Sanchez-Sanchez, J.P. Montavez, A. Hayas-Barru, J. Tovar-Pescador, Il Nuovo Cimento, 31 (5-6) (2008) 825-842.

  • [14] D. Santos-Muñoz, J. Wolff, C. Santos, J.A. García-Moya and L. Nance, Implementation and validation of WRF model as ensemble member of a probabilistic prediction system over Europe. In: 10th Annual WRF Users’ Workshop, 23-26 June 2009 in Boulder, CO, (2009).

  • [15] A. A. Lacis and J. E. Hansen, "A parameterization for the absorption of solar radiation in the earth’s atmosphere", J. Atmos. Sci., 31 (1974) 118-133.

  • [16] J. Dudhia, "Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model", J. Atmos. Sci., 46 (1989) 3077-3107.

  • [17] M.-D. Chou and M. J. Suarez, An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 3 (1994) 85.

  • [18] G. L. Stephens, "Radiation profiles in extended water clouds. Part II: Parameterization schemes", J. Atmos. Sci., 35 (1978) 2123-2132.

  • [19] S.-Y. Hong, J. Dudhia and S.-H. Chen, "A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation", Mon. Wea. Rev., 132 (2004) 103-120.

  • [20] S.-Y. Hong, Y. Noh and J. Dudhia, "A new vertical diffusion package with an explicit treatment of entrainment processes", Mon. Wea. Rev., 134 (2006) 2318-2341.

  • [21] J. S. Kain and J. M. Fritsch, Convective parameterization for mesoscale models: The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models. In: K. A.Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., (1993) 246.

  • [22] C. A. Paulson, "The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer", J. Appl. Meteor., 9 (1970) 857-861.

  • [23] A. J. Dyer and B. B. Hicks, "Flux-gradient relationships in the constant flux layer", Quart. J. Roy. Meteor. Soc., 96 (1970) 715-721.

  • [24] E. K. Webb, "Profile relationships: The log-linear range, and extension to strong stability", Quart. J. Roy. Meteor. Soc., 96 (1970) 67-90.

  • [25] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono and S. A. Clough, "Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave", J. Geophys. Res., 102 (D14) (1997) 16663-16682.

  • [26] V. Lara-Fanego, J.A. Ruiz-Arias, D. Pozo-Vazquez, F.J. Santos-Alamillos, J. Tovar- Pescador, "Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain)", Solar Energy (2011) doi:10.1016/j.solener.2011.02.014.


Journal + Issues