In this present paper we introduce and investigate each of the following new subclasses F^{m}_{p,λ,l,k}(α;ϕ), Ĝ^{m}_{p,λ, l}(α;ϕ) and N^{m}_{p,λ,l}(α;ϕ) as well as T^{m}_{p,λ,l,k}(α;ϕ), Ĝ^{m}_{p,λ, l}(α;ϕ) and Ŕ̂^{m}_{p,λ, l}(α;ϕ) of meromorphic functions, which is defined by means of a certain meromorphically p-modified version of the convolution structure. Such results as inclusion relationships, integral representations and convolution properties for these function classes are proved.
[1] M. K. Aouf Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function Comput. Math. Appl. 55 (2008) 494-509.
[2] M. K. Aouf and H. M. Hossen New criteria for meromorphic p-valent starlike functions Tsukuba J. Math. 17 (1993) 481-486.
[3] M. K. Aouf A. Shamandy R. M. El-Ashwah and E. E. Ali Some subclassesof meromorphically multivalent functions associated with the generalized multiplier transformations Asian Europe. J. Math. 5 (2012) 1-20.
[4] T. Bulboaca Differential subordinations and superordinations Recent Results House of Scientiffc Book Publ. Cluj-Napoca 2005.
[5] N. E. Cho O. S. Kwon and H.MSrivastava Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations J. Math. Anal. Appl. 300 (2004) 505-520.
[6] J. Dziok and H. M. Srivastava Classes of analytic functions associated with the generalized hypergeometric function Appl. Math. Comput. 103 (1999) 1-13.
[7] J. Dziok and H. M. Srivastava Certain subclasses of analytic functions associated with the generalized hypergeometric function Integral Transforms Spec. Funct. 14 (2003) 7-18.
[8] P. Eenigenburg S. S. Miller P. T. Mocanu and M. O. Reade On a Briot- Bouquet differential subordination in: General Mathematics 3 International Series of Numerical Mathemtics Vol. 64 Birkhauser. Verlag Basel 1983 339-348 see also Rev. Roumaine Math. Pures Appl. 29(1984) 567-573.
[9] R. M. El-Ashwah A note on certain meromorphic p-valent functions Appl. Math. Lett. 22 (2009) 1756-1759.
[10] J. L. Liu and H. M. Srivastava A linear operator and associated families of meromorphically multivalent functions J. Math. Anal. Appl. 259 (2001) 566-581.
[11] J. L. Liu and H. M. Srivastava Classes of meromorphically multivalent functions associated with the generalized hypergeometric function Math. Comput. Model. 39 (2004) 21-34.
[12] S. S. Miller and P. T. Mocanu On some classes of ffrst order differential subor- dinations Michigan Math. J. 32 (1985) 185-195.
[13] S. S. Miller and P. T. Mocanu Differential Subordinations: Theory and Appli- cations Series on Monographs and Texbooks in Pure and Applied Mathematics 225 (2000.)
[14] K. S. Padmanabhan and R. Parvatham Some applications of differential sub- ordination Bull. Aust. Math. Soc. 32 (1985) 321-330.
[15] R. K. Raina and H. M. Srivastava A new class of meromorphically multivalent functions with applications to generalized hypergeometric functions Math. Comput. Model. 43 (2006) 350-356.
[16] H. M. Srivastava D. -G. Yang and N. E. Xu Some subclasses of meromorphi- cally multivalent functions associated with a linear operator Appl. Math. Comput. 195 (2008) 11-23.
[17] B. A. Uralegaddi and C. Somanatha New Criteria for meromorphic starlike functions Bull. Aust. Math. Soc. 43 (1991) 137-140.
[18] Z. G. Wang Y. P. Jiang and H. M. Srivastava Some subclasse of meromorphi- cally multivalent functions associated with the generalized hypergeometric function Comput. Math. Appl. 57 (2009) 571-586.
[19] Z. -Z. Zou and Z. R. Wu On meromorphically starlike functions and functions meromorphically starlike with respect to symmetric conjuagate points J. Math. Anal. Appl. 261 (2001) 17-27.
[20] Z. -Z. Zou and Z. R. Wu On functions meromorphically starlike with respect to symmetric points J. Math. Res. Expos. 23 (2003) 71-76.