Contributions to Persistence Theory

Open access

Abstract

Persistence theory discussed in this paper is an application of algebraic topology (Morse Theory [29]) to Data Analysis, precisely to qualitative understanding of point cloud data, or PCD for short. PCD can be geometrized as a filtration of simplicial complexes (Vietoris-Rips complex [25] [36]) and the homology changes of these complexes provide qualitative information about the data. Bar codes describe the changes in homology with coefficients in a fixed field. When the coefficient field is ℤ2, the calculation of bar codes is done by ELZ algorithm (named after H. Edelsbrunner, D. Letscher, and A. Zomorodian [20]). When the coefficient field is ℝ, we propose an algorithm based on the Hodge decomposition [17]. With Dan Burghelea and Tamal K. Dey we developed a persistence theory which involves level sets discussed in Section 4. We introduce and discuss new computable invariants, the “relevant level persistence numbers” and the “positive and negative bar codes”, and explain how they are related to the bar codes for level persistence. We provide enhancements and modifications of ELZ algorithm to calculate such invariants and illustrate them by examples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] H. Adams JPlex Matlab Tutorial December 26 2011

  • [2] M. de Berg O. CheongM. van Kreveld and M. Overmars Computational Geometry: Algorithms and Applications (Third Edition) Springer-Verlag Heidelberg 2008

  • [3] D. Burghelea and T. K. Dey Topological Persistence for Circle Valued Maps Discrete Comput. Geom. 50 (2013) no.1 69-98

  • [4] G. Carlsson Topology and Data Bull. Amer. Math. Soc. 46 (2009) 255-308

  • [5] G. Carlsson A. Collins L. Guibas and A. Zomorodian Persistence barcodes for shapes Internat. J. Shape Modeling 11 (2005) 149-187

  • [6] G. Carlsson and V. D. Silva Zigzag Persistence Foundations of Computational Mathematics 10(4) (2010) 367-405

  • [7] G. Carlsson V. D. Silva and D. Morozov Zigzag Persistent Homology and Real-valued Functions Proc. 25th Ann. Sympos. Comput. Geom. (2009) 247-256

  • [8] F. Chazal D. Cohen-Steiner M. Glisse L. J. Guibas and S. Y. Oudot Proximity of persistence modules and their diagrams Proc. 25th Ann. Sympos. Comput.Geom. (2009) 237-246

  • [9] D. Cohen-Steiner H. Edelsbrunner and J. L. Harer Stability of persistence diagrams Discrete Comput. Geom. 37 (2007) 103-120

  • [10] D. Cohen-Steiner H. Edelsbrunner J. L. Harer and Y. Mileyko Lipshitz functions have Lp-stable persistence Foundations of Computational Mathematics 10 (2) (2010) 127-139

  • [11] D. Cohen-Steiner H. Edelsbrunner J. L. Harer and D. Morozov Persistent homology for kernels images and cokernels. Proc. 20th Ann. ACM-SIAM Sympos. Discrete Alg. (2009) 1011-1020

  • [12] D. Cohen-Steiner H. Edelsbrunner and D. Morozov Vines and vineyards by updating persistence in linear time Proc. 22nd Ann. Sympos. Comput. Geom. (2006) 119-126

  • [13] H. S. M. Coxeter Introduction to Geometry (Second Edition) Wiley Classics Library 1989

  • [14] J. Dattorro Convex Optimization & Euclidean Distance Geometry Meboo Publishing 2008

  • [15] R. Deheuvels Topologie d’une fonctionnelle Ann. of Math. 61 (1955) 13-72

  • [16] T. K. Dey and R. Wenger Stability of Critical Points with Interval Persistence Discrete Comput. Geom. 38 (2007) 479-512

  • [17] B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex Commentarii Math. Helvetici 17 (1944-1945) 240-255

  • [18] H. Edelsbrunner and J. L. Harer Persistent homology - a survey Surveys on Discrete and Computational Geometry Twenty Years Later J.E. Goodman J. Patch and R Pollack (eds.) Contemporar

  • [19] H. Edelsbrunner and J. L. Harer Computational Topology: An Introduction AMS Press 2010

  • [20] H. Edelsbrunner D. Letscher and A. Zomorodian Topological persistence and simplification Discrete Comput. Geom. 28 (2002) 511-533

  • [21] P. Frosini and C. Landi Size theory as a topological tool for computer vision Pattern Recognition and Image Analysis 9 (1999) 596-603

  • [22] P. Gabriel Unzerlegbare Darstellungen I Manuscr. Math. 6 (1972) 71-103

  • [23] B. Grünbaum Convex Polytopes (2nd Edition) GTM 221 Springer 2003

  • [24] A. Hatcher Algebraic Topology Cambridge University Press 2002

  • [25] J.-C. Hausmann On the Vietoris-Rips complexes and a cohomology theory for metric spaces Prospects in Topology: Proceedings of a conference in honour of William Browder Annals of Mathematics Studies 138 175-188 Princeton Univ. Press 1995

  • [26] R. Kannan and A. Bachem Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix SIAM J. Comput. 8 (1979) 499-507

  • [27] S. Lang Chapter III Modules Section 7 Modules over principal rings Algebra( Revised Third Edition) GTM 211 146-155 Springer 2002

  • [28] F. Meunier Polytopal complexes: maps chain complexes and... necklaces arXiv:0806.1488v2 (2008)

  • [29] J. Milnor Morse Theory (Annals of Mathematic Studies AM-51) Princeton Univ. Press 1963

  • [30] D. Morozov Persistence algorithm takes cubic time in worst case BioGeometry News Dept. Comput. Sci. Duke Univ. Durham North Carolina (2005)

  • [31] J. R. Munkres Elements of Algebraic Topology Westview Press 1993

  • [32] F. P. Preparata and M. I. Shamos Computational Geometry: an Introduction Springer-Verlag New York 1985

  • [33] V. Robins Toward computing homology from finite approximations Topology Proceedings 24 (1999) 503-532

  • [34] H. Sexton and M. V. Johansson JPlex a Java software package for computing the persistent homology of filtered simplicial complexes

  • [35] E. H. Spanier Algebraic Topology Springer-Verlag New York 1966

  • [36] L. Vietoris Über den h¨oheren Zusammenhang kompakter R¨aume und eine Klasse von zusammenhangstreuen Abbildungen Math. Ann. 97 (1927) 454-472

  • [37] A. J. Zomorodian Topology for Computing Cambridge Univ. Press Cambridge England 2005

  • [38] A. J. Zomorodian and G. Carlsson Computing Persistent Homology Discrete Comput. Geom. 33 (2005) 249-274

Search
Journal information
Impact Factor


Mathematical Citation Quotient (MCQ) 2018: 0.09

Target audience:

researchers in all branches of mathematics and computer science

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 67 10
PDF Downloads 70 48 4