Analysis of a Unilateral Contact Problem with Normal Compliance

Open access

Abstract

The paper deals with the study of a quasistatic unilateral contact problem between a nonlinear elastic body and a foundation. The contact is modelled with a normal compliance condition associated to unilateral constraint and the Coulomb's friction law. The adhesion between contact surfaces is taken into account and is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove an existence and uniqueness result in the case where the coefficient of friction is bounded by a certain constant. The technique of the proof is based on arguments of time-dependent variational inequalities, differential equations and fixed-point theorem.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] L.-E. Andersson Existence result for quasistatic contact problem with Coulomb friction Appl. Math. Optimiz. 42 (2000) 169-202

  • [2] H. T. Banks S. Hu and Z. R Kenz A brief review of elasticity and viscoelasticity for solids Adv. Appl. Math. Mech. 3 (2011) 1-51

  • [3] L. Cangémi Frottement et adhérence: modèle traitement numérique et application à l'interface fibre/matrice Ph.D. Thesis Univ. Méditerranée Aix Marseille I 1997

  • [4] O. Chau J. R. Fernandez M. Shillor and M. Sofonea Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion Journal of Computational and Applied Mathematics 159 (2003) 431-465

  • [5] O. Chau M. Shillor and M. Sofonea J. Appl. Math. Phys. (ZAMP) 55 (2004) 32-47

  • [6] M.Cocou E. Pratt and M. Raous Formulation and approximation of quasistatic frictional contact Int.J.Engng Sc. 34 (1996) 783-798

  • [7] M. Cocou and R. Rocca Existence results for unilateral quasistatic contact problems with friction and adhesion 34 (2000) 981-1001

  • [8] M. Cocou M. Schyvre and M. Raous A dynamic unilateral contact problem with adhesion and friction in viscoelasticity Z. Angew. Math. Phys. 61 (2010) 721-743

  • [9] S. Drabla and Z. Zellagui Analysis of a electro-elastic contact problem with friction and adhesion Studia Univ. "Babes-Bolyai" Mathematica LIV (2009)

  • [10] G. Duvaut C. R. Acad. Sc. Paris Série A 290 (1980) 263

  • [11] G. Duvaut and J-L Lions Les inéquations en mécanique et en physique Dunod Paris 1972

  • [12] C. Eck J. Jarušek and M. Krbec Unilateral Contact Problems. Variational Methods and Existence Theorems Chapman & Hall / CRC (Taylor & Francis Group) Boca Raton-London-New York-Singapore 2005

  • [13] J. R. Fernandez M. Shillor and M. Sofonea Analysis and numerical simulations of a dynamic contact problem with adhesion 37 (2003) 1317-1333

  • [14] M. Frémond Adhérence des solides J. Mécanique Théorique et Appliquée 6 (1987) 383-407

  • [15] M. Frémond Equilibre des structures qui adhèrent à leur support C. R. Acad. Sci.Paris 295 (1982) 913-916

  • [16] M. Frémond Non smooth Thermomechanics Springer Berlin 2002

  • [17] J. Jarušek and M. Sofonea On the solvability of dynamic elastic-visco-plastic contact problems Zeitschrift fur Angewandte Mathematik and Mechanik (ZAMM) 88 (2008) 3-22

  • [18] J. Jarušek and M. Sofonea On the of dynamic elastic-visco-plastic contact problems with adhesion Annals of AOSR Series on Mathematics and its applications 1 (2009) 191-214

  • [19] S. Migorski A. Ochal and M. Sofonea Nonlinear Inclusions and Hemivariational Inequalities Models and Analysis of Contact Problems Advances in Mechanics and Mathematics 26 (2013)

  • [20] M. Migorski A. Ochal and M. Sofonea Analysis of a quasistatic contact problem for piezoelectric materials J. Math. Anal. Appl. 382 (2011) 701-713

  • [21] S. Migorski A. Ochal and M. Sofonea A dynamic frictional contact problem for piezoelectric materials J. Math. Anal. Appl. 361 (2010) 161-176

  • [22] S.A. Nassar T. Andrews S. Kruk and M. Shillor Modelling and Simulations of a bonded rod Math. Comput. Modelling 42 (2005) 553-572

  • [23] M. Raous L. Cangémi and M. Cocu A consistent model coupling adhesion friction and unilateral contact Comput.Meth. Appl. Mech. Engng. 177 (1999) 383-399

  • [24] R. Rocca Analyse et numérique de problèmes quasistatiques de contact avec frottement local de Coulomb en élasticité Thèse Aix Marseille 1 2005

  • [25] J. Rojek and J. J. Telega Contact problems with friction adhesion and wear in orthopeadic biomechanics. I: General developements J. Theor. Appl. Mech. 39 (2001) 655-677

  • [26] M. Shillor M. Sofonea and J. J. Telega Models and Variational Analysis of Quasistatic Contact Lecture Notes Physics 655 (2004)

  • [27] M. Sofonea W. Han and M. Shillor Analysis and Approximation of Contact Problems with Adhesion or Damage Pure and Applied Mathematics 276 (2006)

  • [28] M. Sofonea and T.V. Hoarau -Mantel Elastic frictionless contact problems with adhesion Adv. Math. Sci. Appl 15 (2005) 49-68

  • [29] M. Sofonea and A. Matei Variational inequalities with applications Advances in Mathematics and Mechanics 18 (2009)

  • [30] M. Sofonea and A. Matei An elastic contact problem with adhesion and normal compliance Journal of Applied Analysis 12 (2006) 19-36

  • [31] M. Sofonea F. Patrelescu and A. Farcas A viscoplastic contact problem with normal compliance unilateral constraint and memory term Applied Mathematics & Optimization 69 (2014) 175-198

  • [32] M. Sofonea and F. Patrelescu Analysis of a history-dependent frictionless contact problem Mathematics and Mechanics of solids 18 (2012) 409-430

  • [33] M. Sofonea and A. Matei Mathematical models in Contact Mechanics London Mathematical Society Lecture Notes Cambridge University Press 398 Cambridge 2012

  • [34] A. Touzaline Frictionless contact problem with finite penetration for elastic mate- rials Ann. Pol. Math. 98 (2010) 23-38

  • [35] A. Touzaline Analysis of a contact adhesive problem with normal compliance Ann. Pol. Math. 104 (2012) 175-188

Search
Journal information
Impact Factor


Mathematical Citation Quotient (MCQ) 2018: 0.09

Target audience:

researchers in all branches of mathematics and computer science

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 196 87 2
PDF Downloads 103 63 3