Application of Physical Vapor Deposition in Textile Industry

Pamela Miśkiewicz 1 , Iwona Frydrych 1  and Agnieszka Cichocka 1
  • 1 Faculty of Material Technologies and Textile Design, 90-924, Lodz, Poland


Currently, scientists are striving to produce innovative textile materials characterized by special properties. Therefore, attempts have been made to use physical and chemical vapor deposition techniques to modify the surface of textile materials, i.e., nonwovens, fabrics, and knitted fabrics. By using these techniques for modifying the basic materials, researchers have obtained textiles with novel properties, which are used in shielding materials, textronics, or clothing, as well as in specialized accessories. The PVD process can be applied for almost all materials. The physical vapor deposition process allows for obtaining layers of different thicknesses and with various physical and chemical properties. This article is a review of the latest state of the art on the use of various methods of physical vapor deposition in textiles destined for different purposes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Shahidi, S., Moazzenchi, B., Ghoranneviss, M. (2015). A review - application of physical vapor deposition (PVD) and related methods in textile industry. The European Physical Journal Applied Physics, 71(3), 75-79.

  • [2] Mattox, D. M. (2010). Handbook of physical vapor deposition (PVD) processing. William Andrew.

  • [3] Kula, P. (2000). Surface layer engineering, Monograph, Lodz University of Technology (Łodz). pp. 221-238.

  • [4] Burakowski, T., Wierzchoń, T. (1995). Metal surface engineering: Fundamentals, devices, technologies. Wydawnictwo Naukowo - Techniczne (Warsaw).

  • [5] Burakowski, T., Wierzchoń, T. (1998). Surface engineering of metals: Principles, equipment, technologies. CRC Press.

  • [6] Baptista, A., Silva, F. J. G., Poeteiro, J., Miguez, J., Pitno, G. (2018). Review sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings, 8(402), 2-22.

  • [7] Mattox, D. M. (2002). Physical vapor deposition (PVD) processes. Metal Finishing, 100(Supplement 1), 394-408

  • [8] Blicharski, M. (2009). Surface engineering. Wydawnictwa Naukowo - Techniczne Sp. z o.o. (Warsaw).

  • [9] Dobrzański, L. A. (2007). Basics of shaping the structure and properties of metal materials. Silesian University of Technology Publishing (Gliwice).

  • [10] Ziaja, J. (2012). Monograph, scientific works of the institute of electrical engineering and electrotechnology at the Wrocław University of Technology: Thin-film metallic and oxide structures. Properties, Technology, Application in Electrical Engineering (Wroclaw), pp. 15–37.

  • [11] Baptista, A., Silva, F. J. G., Poeteiro, J., Miguez, J., Pitno, G., et al. (2018). On the Physical Vapour Deposition (PVD): Evolution of magnetron sputtering processes for industrial applications. Procedia Manufacturing, 17, pp. 746-757.

  • [12] Oziomek, M., Wilczyński, W. (2009). Appliction of Ni-Fe thin films for shieldings of electromagnetic fields. Prace Instytutu Elektrotechniki (in Polish), 241, 40-48.

  • [13] Bula, K., Koprowska, J., Janukiewicz, J. (2006). Application of cathode sputtering for obtaining ultra-thin metallic coatings on textile products. Fibres & Textiles in Eastern Europe, 14(5) (59), 75-79.

  • [14] Proudnik, A., Zamastotsky, Y., Siarheyev, V., Siuborov, V., Stankevich, E., et al. (2012). Electromagnetic interference shielding properties of the Cu, Ti and Cr coatings deposited by Arc-PVD on textile materials. Przegląd Elektrotechniczny (in Polish), No. 6, pp. 81-83.

  • [15] Susek, W., Stanisławek, S. (2018). Study of innovation special textile clothing materials properties in the microwave range. Elektronika: Konstrukcje, Technologie, Zastosowania (in Polish), 59(6), 6-8.

  • [16] Ziaja, J., Jaroszewski, M., Lewandowski, M., Sasuła, M. (2018). Flexible materials used in electromagnetic field shielding), Przegląd Elektrotechniczny (in Polish), 10, ISSN 0033-2097.

  • [17] Ziaja, J., Koprowska, J., Janukiewicz, J. (2008). Using plasma metallisation for manufacture of textile screens against electromagnetic fields. Fibres & Textiles in Eastern Europe, 16(5) (70), 64-66.

  • [18] Jaroszewski, M., Pospieszna, J., Ziaja, J. (2010). Dielectric properties of polypropylene fabrics with carbon plasma coatings for applications in the technique of electromagnetic field shielding. Journal of Non-Crystalline Solids, 356(11-17), 625-628.

  • [19] Kubsz, I. (2011). Modern electroconductive textiles produced by the method of physical vapour deposition (pvd), Przegląd Włókienniczy – Włókno, Odzież, Skóra (in Polish), 7-8, 44-48.

  • [20] Korzeniewska, E., Józwik, J., Zawiślak, R., Krawczyk, A., Michałowska, J. (2017). Resistance of metallic layers used in textronic systems to mechanical deformation. Przegląd Elektrotechniczny (in Polish), 12, 111-114.

  • [21] Koneczny, C. (2016). Properties of thin conductive layers produced on composite textile structures using the method of thermal vacuum deposition, doctoral dissertation under the supervision of dr hab. Eng. Ryszard Pawlak, prof. TUL, 2016, Technical University of Lodz.

  • [22] Pawlak, R., Korzeniewska, E., Koneczny, C., Hałgas, B. (2017). Properties of thin metal layers deposited on textile composites by using the PVD method for textronic applications. Autex Research Journal 17(3), 229-237.

  • [23] Pawlak, R., Korzeniewska, E., Frydrysiak, M., Zięba, J., Tęsiorowski, Ł., et al. (2012). Using vacuum deposition technology for the manufacturing of electro-conductive layers on the surface of textiles. Fibres & Textiles in Eastern Europe, 20(2)(91), 68-72.

  • [24] Deng, B., Wei, Q., Gao, W., Yan, X. (2007). Surface functionalization of nonwovens by aluminum sputter coating. Fibres & Textiles in Eastern Europe, 15(4) (63), 90-92.

  • [25] Silva, N. L., Gonçalves, L. M., Carvalho, H. (2013). Deposition of conductive materials on textile and polymeric flexible substrates. Journal of Materials Science: Materials in Electronics, 24(2), 635-643.

  • [26] Yuan, X., Wei, Q., Chen, D., Xu, W. (2015). Electrical and optical properties of polyester fabric coated with Ag/TiO2 composite films by magnetron sputtering. Textile Research Journal, 86(8), 887-894.

  • [27] Depla, D., Segers, S., Leroy, W., Van Hove, T., Van Parys, M. (2011). Smart textiles: An explorative study of the use of magnetron sputter deposition. Textile Research Journal, 81(17), 1808-1817.

  • [28] Wei, Q., Yu, L., Hou, D., Huang, F. (2008). Surface characterization and properties of functionalized nonwoven. Journal of Applied Polymer, Science, 107, 132-137.

  • [29] Nowak, I., Krucińska, I., Januszkiewicz, Ł. (2019). Metallic electroconductive transmission lines obtained on textile substrates by magnetron sputtering. Fibres & Textiles in Eastern Europe, 27(3) (135), 51-57.

  • [30] Scholza, J., Nockea, G., Hollsteinb, F., Weissbachb, A. (2005). Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surface & Coatings Technology, 192, 252-256.

  • [31] Castro, C., Sanjines, R., Pulgarin, C., Osorio, P., Giraldo, S. A., et al. (2010). Structure–reactivity relations for DC-magnetron sputtered Cu-layers during E. coli inactivation in the dark and under light, Journal of Photochemistry and Photobiology A: Chemistry, 216(2–3), 295-302.

  • [32] Chen, Y. H., Hsu, C. H., He, J. L. (2013). Antibacterial silver coating on poly(ethylene terephthalate) fabric by using high power impulse magnetron sputtering, Surface & Coatings Technology, 232, 868-875.

  • [33] Chen, Y. H., Wu, G. W., He, J. L. (2015). Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering. Materials Science and Engineering: C, 48, 41-47.

  • [34] Zhai, Y., Liu, X., Xiao, L. (2015). Magnetron sputtering coating of protective fabric study on influence of thermal properties. Journal of Textile Science and Technology, 1(3), 127-134.

  • [35] Han, H. R., Kim, J. J. (2017). A study on the thermal and physical properties of nylon fabric treated by metal sputtering (Al, Cu, Ni). Textile Research Journal, 88(21), 2397-2414.

  • [36] Han, H. R., Park, Y., Yun, Ch., Park, C. H. H. (2018). Heat transfer characteristics of aluminum sputtered fabrics. Journal of Engineered Fibers and Fabrics, 13(3), 37-44.

  • [37] Meriç, Z. (2011). Antistatic applications: metal coated fibers by magnetron sputtering. Master of Science, Izmir Institute of Technology.

  • [38] Chodun, R., Wicher, B., Skowroński, Ł., Nowakowska-Langier, K., Okrasa, S., et al. (2017). Multi-sided metallization of textile fibres by using magnetron system with grounded cathode. Materials Science Poland, 35(3), 639-646.

  • [39] Vančoa, M., Jan Krmela, J., Pešlováa, F. (2015). The use of PVD coating on natural textile fibers. The 20th International Conference: Machine Modeling and Simulations, MMS 2015.

  • [40] Dietzel, Y., Przyborowski, W., Nockea, G., Offermannb, P., Hollsteinc, F., et al. (2000). Investigation of PVD arc coatings on polyamide fabrics. Surface and Coatings Technology, 135(1), 75-81.

  • [41] Wei, Q., Yu, L., Wu, N., Hong, S. (2008). Preparation and characterization of copper nanocomposite textiles. Journal of Industrial Textiles, 37(3), 275-283.

  • [42] Wei, Q., Wang, H., Deng, B., Xu, Y. (2010). Surface and interface investigation of Indium-Tin-Oxide (ITO) coated nonwoven fabrics. Journal of Adhesion Science and Technology, 24(1), 135-147.

  • [43] Lee, S. Y., Hong, T. M., Jin, D. Y., Lee, J. E., Lee, J. S., et al. (2015). Properties of aluminum deposited chemically recycled PET fabrics. Fibers and Polymers, 16(12), 2698-2703.

  • [44] Miśkiewicz, P., Frydrych, I., Pawlak, W., Cichocka, A. (2019). Modification of surface of basalt fabric on protecting against high temperatures by the method of magnetron sputtering. Autex Research Journal, 19(1), 36-43.

  • [45] Miśkiewicz, P., Frydrych, I., Pawlak, W. (2019). The influence of basalt fabrics modifications on their resistance to contact heat and comfort properties. International Journal of Clothing Science and Technology, 31(6), 874-886.

  • [46] Miśkiewicz, P., Frydrych, I. Tokarska, M., Pawlak, W. (2019). Study on some thermal and electrical properties of basalt fabric modified with metal and ceramics as a result of magnetron sputtering. Polymers, 11(12), 1-15.

  • [47] Miśkiewicz, P., Frydrych, I., Makówka, M. (2020). Examination of selected thermal properties of basalt composites. Fibres & Textiles in Eastern Europe, 2(140).


Journal + Issues