Analysis of the Thermal Insulation of Textiles Using Thermography and CFD Simulation Based on Micro-CT Models

Adam K. Puszkarz 1 , Jarosław Wojciechowski 1  and Izabella Krucińska 1
  • 1 Institute of Material Science of Textiles and Polymer Composites, 90-924, Lodz, Poland

Abstract

The article presents the results of an attempt to use high-resolution X-ray micro-computed tomography (micro-CT) to model the thermal insulation of clothing as one of the most important parameters affecting the heat balance between a human and his/her surroundings. Cotton knitted fabric applied in functional clothing for newborns and aramid woven fabric used in multilayer protective clothing for firefighters were the tested materials. The 3D models of real textiles based on micro-CT images were developed. Next, the models were applied to heat transfer simulations using the finite volume method. The usefulness of the models was experimentally verified using thermography with real textiles. The simulation results were consistent with the measurement results and confirmed the relationship between the thermal insulation and geometry of the textiles on the one hand and the physical parameters of the raw materials from which they were made on the other hand.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ziaei, M., Ghane, M., Hasani, H., Saboonchi, A. (2019). Simulation of Temperature distribution within weft-knitted fabrics in extended state. Clothing and Textiles Research Journal. DOI: 10.1177/0887302×19856112.

  • [2]. Buzaite, V., Repon, R. M. D., Milasiene, D., Mikucioniene, D. (2019). Development of multi-layered weft-knitted fabrics for thermal insulation. Journal of Industrial Textiles, 88(14). DOI: 10.1177/1528083719878811.

  • [3]. Mikučioniene, D., Čepukone, L., Milašiene, D. (2017). Investigation on mechanical and thermal properties of knits from peat fibers and their combination with other natural fibers. Textile Research Journal, 88(14), 1660-1670.

  • [4] Huang, W., Causse, P., Brailovski, V., Hu, H., Trochu, F. (2019). Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT aided geometric modeling. Composites Part A: Applied Science and Manufacturing, 124, 105481.

  • [5] Desplentere, F., Lomov, S. V., Woerdeman, D. L., Verpoest, I., Wevers, M., et al. (2005). Micro-CT characterization of variability in 3D textile architecture. Composites Science and Technology, 65(13), 1920-1930.

  • [6] Barburski, M., Straumit, I., Zhang, X., Wevers, M., Lomov, S. V. (2015). Micro-CT analysis of internal structure of sheared textile composite reinforcement. Composites Part A: Applied Science and Manufacturing, 73, 45-54.

  • [7] Chowdhury, N. T., Tao, C., Pearce, G.M., Walsh, S. D. C., Latham, S. J., et al. (2019). Design of an uncontaminated textile CFRP specimen optimised for both mechanical testing and X-ray microtomography. Composites Part A: Applied Science and Manufacturing, 123, 208-221.

  • [8] Vanaerschot, A., Panerai, F., Cassell, A., Lomov, S. V., Vandepitte, D., et al. (2017). Stochastic characterisation methodology for 3-D textiles based on micro-tomography. Composite Structures, 173, 44-52.

  • [9] Meftah, R., Berger, S., Jacqus, G., Laluet, J.-Y., Cnudde, V. (2019). Multiscale characterization of glass wools using X-ray micro-CT. Materials Characterization, 156, 109852.

  • [10] Straumit, I., Hahn, Ch., Winterstein, E., Plank, B., Lomov, S. V., et al. (2016). Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images. Composites Part A: Applied Science and Manufacturing, 81, 289-295.

  • [11] Pazmino, J., Carvelli, V., Lomov, S. V. (2014). Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Composites Part B: Engineering, 65, 147-157.

  • [12] Sinchuk, Y., Pannier, Y., Antoranz-Gonzalez, R., Gigliotti, M. (2019). Analysis of moisture diffusion induced stress in carbon/epoxy 3D textile composite materials with voids by µ-CT based Finite Element Models. Composite Structures, 212, 561-570.

  • [13] Gliścińska, E., Sankowski, D., Krucińska, I., Gocławski, J., Michalak, M., et al. (2017).. Optical coherence tomography image analysis of polymer surface layers in sound-absorbing fibrous composite materials. Polymer Testing, 63, 194-203.

  • [14] Puszkarz, A. K., Korycki, R., Krucinska, I. (2015). Simulations of heat transport phenomena in a three-dimensional model of knitted fabric. Autex Research Journal, 16(3), 128–137. DOI: 10.1515/aut-2015-0042 ©AUTEX.

  • [15] Puszkarz, A. K., Krucińska, I. (2016). Study of multilayer clothing thermal insulation using thermography and the finite volume method. Fibres and Textiles in Eastern Europe, 24 6(120), 129-137.

  • [16] Puszkarz, A. K., Krucińska, I. (2017). The study of knitted fabric thermal insulation using thermography and finite volume method. Textile Research Journal, 87(6), 643-656.

  • [17] Puszkarz, A. K., Krucińska, I. (2018). Modeling of air permeability of knitted fabric using the computational fluid dynamics. Autex Research Journal, 18(4), 364-376 DOI: 10.1515/aut-2018-0007 © AUTEX.

  • [18] Puszkarz, A. K., Krucińska, I. (2018). Simulations of air permeability of multilayer textiles by the computational fluid dynamics. International Journal for Multiscale Computational Engineering, 16(6), 509-526.

  • [19] Puszkarz, A. K., Usupov, A. (2019). The study of footwear thermal insulation using thermography and finite volume method. International Journal of Thermophysics, 40, 45. DOI: 10.1007/s10765-019-2509-1.

  • [20] Puszkarz, A. K., Machnowski, W., Błasińska, A. (2020) Modeling of thermal performance of multilayer protective clothing exposed to radiant heat. Heat and Mass Transfer. DOI: 10.1007/s00231-020-02820-1.

  • [21] EN 12127. Textiles - Fabrics - Determination of mass per unit area using small samples.

  • [22] Pietrzak, K., Gutarowska, B., Machnowski, W., Mikołajczyk, U. (2015) Antimicrobial properties of silver nanoparticles misting on cotton fabrics. Textile Research Journal, 86(8), 812-822. DOI: 10.1177/0040517515596933.

  • [23] SolidWorks Flow Simulation - Technical Reference 2014.

  • [24] Jiang, N., Mohebujjaman, M., Rebholz, L. G., Trenchea, C. (2016). An optimally accurate discrete regularization for second order timestepping methods for Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 310, 388-405.

  • [25] Web site: https://www.engineeringtoolbox.com (accessed: 31 October 2019).

OPEN ACCESS

Journal + Issues

Search