A New Approach for Thermal Resistance Prediction of Different Composition Plain Socks in Wet State (Part 2)

Tariq Mansoor 1 , Lubos Hes 1  and Vladimir Bajzik 1
  • 1 Faculty of Textile Engineering, Technical University of Liberec, Liberec


Socks’ comfort has vast implications in our everyday living. This importance increased when we have undergone an effort of low or high activity. It causes the perspiration of our bodies at different rates. In this study, plain socks with different fiber composition were wetted to a saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in wet state at different moisture levels. Theoretical thermal resistance is predicted using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fiber) in different models. By this modification, these mathematical models can predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance has reason able correlation with experimental results in both dry (laboratory conditions moisture) and wet states.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Slater, K. (1986). Discussion paper the assessment of comfort. The Journal of the Textile Institute, 77(3), 157-171.

  • [2] Adler, M. M., Walsh, W. K. (1984). Mechanisms of transient moisture transport between fabrics. Textile Research Journal, 54(5), 334-343.

  • [3] Woodcock, A. H. (1962). Moisture transfer in textile systems, Part I. itleTextile Research Journal, 32(8), 628-633.

  • [4] Gagge, A. P., Gonzalez, R. R. (1974). Physiological and physical factors associated with warm discomfort in sedentary man. entalEnvironmental Research, 7(2), 230-242.

  • [5] Plante, A. M., Holcombe, B. V., Stephens, L. G. (1995). Fiber hygroscopicity and perceptions of dampness part I: Subjective trials. Textile Research Journal, 65(5), 293-2985.

  • [6] Wong, A. S. W., Li, Y. (1999). Psychological requirement of professional athlete on active sportswear. In: The 5th Asian Textile Conference, Kyoto, Japan, 1999.

  • [7] Havenith, G., Holmér, I., Meinander, H., DenHartog, E., Richards, M., et al. (2006). Assessment of thermal properties of protective clothing and their use. EU Final Report.

  • [8] Lotens, W. (1993). Ph.D. Dissertation. TU Delft, Delft University of Technology.

  • [9] Bogusławska-Bączek, M., Hes, L. (2013). Effective water vapour permeability of wet wool fabric and blended fabrics. Fibres &Textiles in Eastern Europe, 21(97), 67-71.

  • [10] Oğlakcioğlu, N., Marmarali, A. (2010). Thermal comfort properties of cotton knitted fabrics in dry and wet states. Tekstil ve Konfeksiyon, 20(3), 213-217.

  • [11] Chen, Y. S., Fan, J., Zhang, W. (2003). Clothing thermal insulation during sweating. Textile Research Journal, 73(2), 152-157.

  • [12] Kuklane, K., Holmér, I. (1998). Effect of sweating on insulation of footwear. International Journal of Occupational Safety and Ergonomics, 4(2), 123-136.

  • [13] Kuklane, K., Holmer, I., Giesbrecht, G. (1999). Change of footwear insulation at various sweating rates. Applied Human Science, 18(5), 161-168.

  • [14] Richards, M. G. M., Rossi, R., Meinander, H., Broede, P., Candas, V., et al. (2008). Dry and wet heat transfer through clothing dependent on the clothing properties under cold conditions. International Journal of Occupational Safety Ergonomics, 14(1), 69-76.

  • [15] Kanat, Z. E., Özdil, N. (2018). Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. The Journal of the Textile Institute, 109(9), 1247-1253.

  • [16] Matusiak, M. (2013). Modelling the thermal resistance of woven fabrics. The Journal of the Textile Institute, 104(4), 426-437.

  • [17] Qian, X., Fan, J. (2006). Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind. Annals of Occupational Hygiene, 50(8), 833-842.

  • [18] Mangat, M. M., Hes, L. (2014). Thermal resistance of denim fabric under dynamic moist conditions and its investigational confirmation. Fibres & Textiles in Eastern Europe, 22(6), 101-105.

  • [19] Mangat, M. M., Hes, L., Bajzík, V. (2015). Thermal resistance models of selected fabrics in wet state and their experimental verification. Textile Research Journal, 85(2), 200-210.

  • [20] Hollies, R. S., Bogaty, H. (1965). Some thermal properties of fabrics: part II: the influence of water content. Textile Research Journal, 35(2), 187-190.

  • [21] Naka, S., Kamata, Y. (1977). Thermal conductivity of wet fabrics. Journal of the Textile Machinery Society of Japan, 23(4), 114-119.

  • [22] Wei, J., Xu, S., Liu, H., Zheng, L., Qian, Y. (2015). Simplified model for predicting fabric thermal resistance according to its microstructural parameters. Fibres & Textiles in Eastern Europe, 23(4), 57-60.

  • [23] Hes, L., Dolezal, I. (1989). New method and equipment for measuring thermal properties of textiles. Sen’i Kikai Gakkaishi (Journal Text. Mach. Soc. Japan), 42(8), T124-T128.

  • [24] Fricke, H. (1924). A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Physical Review, 24(5), 575.

  • [25] Maxwell, J. C. (1954). A treatise on electricity and magnetism.

  • [26] Eucken, A. (1940). Allgemeine gesetzmäßigkeiten für das wärmeleitvermögen verschiedener stoffarten und aggregatzustände. Forschung auf dem Gebiet des Ingenieurwesens A, 11(1), 6-20.

  • [27] Carson, J. K. (2002). Prediction of the thermal conductivity of porous foods: A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Engineering, Massey University, Palmerston North, New Zealand, 2002. Massey University.

  • [28] Schuhmeister, J. (1877). Ber. K. Akad. Wien (Math-Naturw. Klasse), vol. 76, p. 283.

  • [29] Militký, J., Becker, C. (2011). Selected topics of textile and material science. Select Topics of Textile and Material Science, p. 404.

  • [30] Ullmann, F. (2008). Ullmann’s fibers., vol. 1. Wiley-VCH Verlag (Weinheim).

  • [31] Lowther, J., Keller, G., Warwick, B. (2006). Statistics for management and economics, 48(9). Cengage Learning.

  • [32] Haghi, A. K. (2005). Experimental survey on heat and moisture transport through fabrics. International Journal of Applied Mechanics and Engineering, 10(2), 217-226.

  • [33] Dias, T., Delkumburewatte, G. B. (2007). The influence of moisture content on the thermal conductivity of a knitted structure. Measurement Science and Technology, 18(5), 1304.


Journal + Issues