Effect of Temperature on the Structure and Filtration Performance of Polypropylene Melt-Blown Nonwovens

Si Cheng 1 , Alam S. M. Muhaiminul 1 , Zhonghua Yue 2 , Yan Wang 1 , Yuanxiang Xiao 1 , Jiri Militky 3 , Mohanapriya Prasad 3  and Guocheng Zhu 1
  • 1 College of Materials and Textiles, 310018, Hangzhou, China
  • 2 Tongxiang Jianmin Filter Material Co., Ltd., 314511, Tongxiang, China
  • 3 Faculty of Textile Engineering, Department of Material Engineering, 46117, Liberec

Abstract

By applying the simultaneous corona-temperature treatment, the effect of electret temperature on the structure and filtration properties of melt-blown nonwovens was investigated. Fiber diameter, pore size, thickness, areal weight, porosity, crystallinity, filtration efficiency, and pressure drop were evaluated. The results demonstrated that some changes occurred in the structure of electret fabrics after treatment under different temperatures. In the range of 20°C~105°C, the filtration efficiency of melt-blown nonwovens has a relationship with the change in crystallinity, and the pressure drop increased because of the change in areal weight and porosity. This work may provide a reference for further improving filtration efficiency of melt-blown nonwovens.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Lin, S., Nejati, S., Boo, C., Hu, Y., Osuji, C. O., et al. (2014). Omniphobic membrane for robust membrane distillation. Environmental Science and Technology Letters, 1, 443-447.

  • [2] He, M., Ichinose, T., Kobayashi, M., Arashidani, K., Yoshida, S., et al. (2016). Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs. Toxicology and Applied Pharmacology, 297, 41-55.

  • [3] Deng, N., Hec, H., Yana, J., Zhao, Y., Ticha, E. B., et al. (2019). One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration. Polymer, 165, 174-179.

  • [4] Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., et al. (2014). Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environmental Health Perspectives, 122, 906-911.

  • [5] Qinfei, K., Xiangyu, Q. (2004). Nonwovens [M]. Donghua University Press (Shanghai, PR China), p. 266.

  • [6] Kacprzyk, R. (2002). Non-conventional application of unwoven fabrics. Journal of Electrostatics, 56, 111-119.

  • [7] Tanthapanichakoon, W., Maneeintr, K., Charinpanitkul, T., Kanaoka, C. (2003). Estimation of collection efficiency enhancement factor for all electret fiber with dust load. Journal of Aerosol Science, 34, 1505-1522.

  • [8] Ji, J. H., Bae, G. N., Kang, S. H. (2003). Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols. Journal of Aerosol Science, 34, 1493-1504.

  • [9] Soltani, I., Macosko, C. W. (2018). Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens. Polymer, 145, 21-30.

  • [10] Uykun, N., Ergal, İ., Kurt, H., Gökçeören, A.T., Göcek, İ., et al. (2014). Electrospun antibacterial nanofibrous polyvinylpyrrolidone/cetyltrimethylammonium bromide membranes for biomedical applications. Journal of Bioactive and Compatible Polymers, 29(4), 382-397.

  • [11] Weeraya, S. L., Wiwut, T. (2006). Correlation for the efficiency enhancement factor of a single electret fiber. Journal of Aerosol Science, 37(2), 228-240.

  • [12] Megelski, S., Stephens, J. S., Chase, D. B., Rabolt, J. F. (2002). Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456-8466.

  • [13] Tang, M., Thompson, D., Chen, S.-C., Liang, Y. Puia, D. Y. H. (2018). Evaluation of different discharging methods on HVAC electret filter media. Building and Environment, 141, 206-214.

  • [14] Thakur, R., Das, D., Das, A. (2013). Electret air filters. Separation and Purification Review, 42, 87-129.

  • [15] Chang, D. Q., Chen, S. C., Pui, D. (2016). Capture of sub-500 nm particles using residential electret HVAC filter media-experiments and modeling. Aerosol and Air Quality Research, 16, 3349-3357.

  • [16] Shu, H., Xiangchao, C., Peng, L., Hui, G. (2017). Study on electret technology of air filtration material. Earth and Environmental Science, 100, 1-8.

  • [17] Brochocka, A., Majchrzycka, K., Makowski, K. (2013). Modified melt-blown nonwovens for respiratory protective devices against nanoparticles. Fibres and Textiles in Eastern Europe, 100, 106-111

  • [18] Chang, D.-Q., Tien, C.-Y., Peng, C.-Y., Tang, M., Chen, S.-C. (2019). Development of composite filters with high efficiency, low pressure drop, and high holding capacity PM2.5 filtration. Separation and Purification Technology, 212, 699-708.

  • [19] Zhang, J.-W., Lebrun, L., Guiffard, B., Belouadah, R., Guyomar, D., et al. (2011). Enhanced electromechanical performance of cellular polypropylene electrets charged at a high temperature. Journal of Physics D Applied Physics, 44, 415403

  • [20] Ji, Z.-B., Xia, Z.-F., Shen, L.-L., An, Z. (2005). Charge storage and its stability in corona charged polypropylene non-woven fabrics used as air filters. Wuli Xuebao/Acta Physica Sinica, 54, 3799-3804.

  • [21] Guim J. (2015). Crystal phase control and correlation to filtering performance for melt-blown polypropylene electret nonwovens. Hangzhou Dianzi University (Hangzhou).

  • [22] Xiao, H., Song, Y., Chen, G. (2014). Correlation between charge decay and solvent effect for melt-blown polypropylene electret filter fabrics. Journal of Electrostatics, 72, 311-314.

  • [23] Lei, L., Qi, D. (2017). Study on testing method for porosity of nonwoven fabric. Fiber Testing Garde, (05), 78-80.

  • [24] Kumar, P. S., Jayaraman, S., Singh, G. (2016). Polymer and composite nanofiber: electrospinning parameters and rheology properties. Rheology and Processing of Polymer Nanocomposites, 329-354.

  • [25] Mao, N., Russell, S. J. (2000). Directional permeability in homogeneous nonwoven structures part I: the relationship between directional permeability and fibre orientation. Journal of the Textile Institute, 91(2), 235-243.

  • [26] Park, H. S., Park, Y. O. (2005). Filtration properties of electrospun ultrafine fiber webs. Korean Journal of Chemical Engineering, 22(1), 165-172.

  • [27] Huang, J. (2012). Preparation and properties of modified melt-blown polypropylene nonwovens. Donghua University http://www.autexrj.com/ (Shanghai).

  • [28] BS EN 1882-1-2009: High efficiency air filters (HEPA and ULPA).

  • [29] (2008). GBT 13554-2008 High efficiency air filter. China Standard Press (Beijing).

  • [30] Wang, Z., Pan, Z. (2015). Preparation of hierarchical structured nano-sized/porous poly (lactic acid) composite fibrous membranes for air filtration. Applied Surface Science, 356, 1168-1179.

  • [31] Spielman, L., Goren, S. L. (1968). Model for predicting pressure drop and filtration efficiency in fibrous media. Environmental Science and Technology, 2(4), 279-287.

  • [32] Shim, W. S., Lee, D. W. (2013). Quality variables of meltblown submicron filter materials. Indian Journal of Fibre and Textile Research, 38(2), 132-137.

OPEN ACCESS

Journal + Issues

Search