Producing Multifunctional Cotton Fabrics Using Nano CeO2 Doped with Nano TiO2 and ZnO

Open access

Abstract

Cross-link method has been used to load nano CeO2, ZnO, and TiO2 on the surface of cotton fabric. Three types of nanocomposite fabrics are prepared (cotton/CeO2, cotton/CeO2/ZnO, and cotton/CeO2/TiO2) and their properties were investigated. Field emission scanning electron microscopic (FESEM) images of the samples showed good distribution of nanomaterial, and energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) samples proved the usage of amount of nanomaterials. On the other hand, elemental mapping was used to study the distribution of each nanomaterial separately. Antibacterial property of the samples showed excellent results against both Gram-negative and Gram-positive bacteria. Also ultraviolet (UV)-blocking of treated samples showed that all samples have very low transmission when exposed to UV irradiation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Goncalves G. Marques P. A. A. P. Pinto R. J. B. Trindade T. Neto C. P. (2009). Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Composites Science and Technology 69(7) 1051-1056.

  • [2] Subramanian K. D’Souza L. Dhurai B. (2009). A study on functional finishing of cotton fabrics using nano-particles of zinc oxide. Materials Science 15(1) 75-79.

  • [3] Li Q. Chen S.-L. Jiang W.-C. (2006). Durability of nano ZnO antibacterial cotton fabric to sweat. Journal of Applied Polymer Science 103(1) 412-416.

  • [4] Yadav A. Prasad V. Kathe A. A. Raj S. Yadav D. et al. (2006). Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science 29(6) 641-645.

  • [5] Yuranova T. Mosteco R. Bandara J. Laub D. Kiwi J. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. Journal of Molecular Catalysis A: Chemical 244(1-2) 160-167.

  • [6] Yan Y. Mi W. Zhao J. Yang Z. Zhang K. et al. (2018). Study of the metal-semiconductor contact to ZnO films. Vacuum 155 210-213.

  • [7] Jung H. J. Koutavarapu R. Lee S. Kim J. H. Choi H. C. et al. (2018). Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ZnO and ZnO/Ag nanostructures. Journal of Environmental Sciences. 74 107-115.

  • [8] Gao D. Lyu L. Lyu B. Ma J. Yang L. et al. (2017). Multifunctional cotton fabric loaded with Ce doped ZnO nanorods. Materials Research Bulletin 89 102-107.

  • [9] Gao D. Zhang J. Lyu B. Lyu L. Ma J. et al. (2018). Poly(quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: An enhanced and durable antibacterial agent. Carbohydrate Polymers 200 221-228.

  • [10] Johansson B. Luo W. Li S. Ahuja R. (2014). Cerium; crystal structure and position in the periodic table. Scientific Reports 4 6398.

  • [11] Kumar R. Umar A. Kumar G. Akhtar M. S. Wang Y. et al. (2015). Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceramics International 41(6) 7773-7782.

  • [12] Wang Y. Xue X. Yang H. Luan C. (2014). Preparation and characterization of Zn/Ce/SO42−-doped titania nano-materials with antibacterial activity. Applied Surface Science 292 608-614.

  • [13] Perelshtein I. Applerot G. Perkas N. Wehrschetz-Sigl E. Hasmann A. et al. (2009). Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Applied Materials & Interfaces 1(2) 361-366.

  • [14] Montazer M. Pakdel E. Behzadnia A. (2011). Novel feature of nano-titanium dioxide on textiles: Antifelting and antibacterial wool. Journal of Applied Polymer Science 121(6) 3407-3413.

  • [15] Khurana N. Adivarekar R. V. (2013). Effect of dispersing agents on synthesis of nano titanium oxide and its application for antimicrobial property. Fibers and Polymers 14(7) 1094-1100.

  • [16] Veronovski N. Rudolf A. Smole M. S. Kreže T. Geršak J. (2009). Self-cleaning and handle properties of TiO2-modified textiles. Fibers and Polymers 10(4) 551-556.-5

  • [17] Karimi L. Mirjalili M. Yazdanshenas M. E. Nazari A. (2010). Effect of nano TiO2 on self-cleaning property of cross-linking cotton fabric with succinic acid under UV irradiation. Photochemistry and Photobiology 86(5) 1030-1037.

  • [18] Palamutcu S. Acar G. Çon A. H. Gültekin T. Aktan B. et al. (2011). Innovative self-cleaning and antibacterial cotton textile: No water and no detergent for cleaning. Desalination and Water Treatment 26(1-3) 178-184.

  • [19] Montazer M. Lessan F. Moghadam M. B. (2012). Nano-TiO2/maleic acid/triethanol amine/sodium hypophosphite colloid on cotton to produce cross-linking and self-cleaning properties. The Journal of the Textile Institute 103(8) 795-805.

  • [20] Chen X. Mao S. S. (2007). Titanium dioxide nanomaterials: synthesis properties modifications and applications. Chemical Reviews 107(7) 2891-2959.

  • [21] Chen X. Selloni A. (2014). Introduction: Titanium dioxide (TiO2) nanomaterials. Chemical Reviews 114(19) 9281-9282.

  • [22] Uğur Ş. S. Sarııšık M. Aktaş A. H. (2011). Nano-TiO2 based multilayer film deposition on cotton fabrics for UV-protection. Fibers and Polymers 12(2) 190-196.

  • [23] Khan M. Z. Ashraf M. Hussain T. Rehman A. Malik M. M. et al. (2015). In situ deposition of TiO2 nanoparticles on polyester fabric and study of its functional properties. Fibers and Polymers 16(5) 1092-1097.

  • [24] Gaya U. I. Abdullah A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9(1) 1-12.

  • [25] Dural-Erem A. Erem H. H. Ozcan G. Skrifvars M. (2015). Anatase titanium dioxide loaded polylactide membranous films: Preparation characterization and antibacterial activity assessment. The Journal of the Textile Institute 106(6) 571-576.

  • [26] Behzadnia A. Montazer M. Rad M. M. (2015). In situ photo sonosynthesis and characterize nonmetal/metal dual doped honeycomb-like ZnO nanocomposites on wool fabric. Ultrasonics Sonochemistry 27 200-209.

  • [27] Montazer M. Behzadnia A. Pakdel E. Rahimi M. K. Moghadam M. B. (2011). Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. Journal of Photochemistry and Photobiology B: Biology 103(3) 207-214.

  • [28] Montazer M. Behzadnia A. Moghadam M. B. (2012). Superior self-cleaning features on wool fabric using TiO2/Ag nanocomposite optimized by response surface methodology. Journal of Applied Polymer Science 125(S2) E356-E363.

  • [29] Wang W. Shang Q. Zheng W. Yu H. Feng X. et al. (2010). A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder. The Journal of Physical Chemistry C 114(32) 13663-13669.

  • [30] Caratto V. Locardi F. Costa G. A. Masini R. Fasoli M. et al. (2014). NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: The effect of dopants. ACS Applied Materials & Interfaces 6(20) 17346-17351.

  • [31] Faisal M. Ismail A. A. Ibrahim A. A. Bouzid H. Al-Sayari S. A. (2013). Highly efficient photocatalyst based on Ce doped ZnO nanorods: Controllable synthesis and enhanced photocatalytic activity. Chemical Engineering Journal 229 225-233.

  • [32] Ibănescu M. Muşat V. Textor T. Badilita V. Mahltig B. (2014). Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics. Journal of Alloys and Compounds 610 244-249.

  • [33] Fu F. Li L. Liu L. Cai J. Zhang Y. et al. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces 7(4) 2597-2606.

  • [34] Manna J. Begum G. Kumar K. P. Misra S. Rana R. K. (2013). Enabling antibacterial coating via bioinspired mineralization of nanostructured ZnO on fabrics under mild conditions. ACS Applied Materials & Interfaces 5(10) 4457-4463.

  • [35] Gao D. Chen C. Ma J. Duan X. Zhang J. (2014). Preparation characterization and antibacterial functionalization of cotton fabric using dimethyl diallyl ammonium chloride-allyl glycidyl ether-methacrylic/nano-ZnO composite. Chemical Engineering Journal 258 85-92.

  • [36] Hatamie A. Khan A. Golabi M. Turner A. P. F. Beni V. et al. (2015). Zinc oxide nanostructure-modified textile and its application to biosensing photocatalysis and as antibacterial material. Langmuir 31(39) 10913-10921.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 6
PDF Downloads 32 32 9