Evaluation of Cochlospermum vitifolium Extracts as Natural Dye in Different Natural and Synthetic Textiles

Open access


Cochlospermum vitifolium flowers were evaluated as a raw material of natural dye on different fabrics, natural and synthetic. The dyeing process evaluation was performed by CIELa*b* color coordinates analysis. Color fastness was evaluated using the AATCC 61-1B and AATCC 116 methods. The chemical identification of the compounds in the color fraction was carried out by HPLC–MS/MS. The naringenin was determined to be the color compound. Among the natural textiles, the wool presented the best uniformity of dyeing and fixation of color, achieving the best hue when a pre-mordant treatment was used. The combination of sodium and potassium tartrate dye resulted in the best final hue, between the yellow and red regions of the CIELa*b* space (L = 49.84, a* = 5.41, b* = 45.52). The dyeing of the wool by the sodium and potassium tartrate pretreatment showed the best fastness properties to the laundering test (ΔEab = 54.56), as well as in the rub test (ΔEab = 67.36). The extract of C. vitifolium could be considered as an alternative natural dye for textiles with a protein base (e.g., wool fabrics), obtaining the best results when mordant pretreatment is used.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Clark M. (Ed.). (2011). Fundamental principles of dyeing. Principles processes and types of dyes vol 1. (1 ed.). Padstow (Co.) Woodhead Publishing Series in Textiles (Cambridge).

  • [2] Zollinger H. (2003). Color chemistry: synthesis properties and applications of organic dyes and pigments (3 ed.). Willey-VCH (Cambs).

  • [3] Bechtold T. Turcanu A. Ganglberger E. Geissler S. (2003). Natural dyes in modern textile dyehouses – How to combine experiences of two centuries to meet the demands of the future? Journal of Cleaner Production 11(5) 499-509.

  • [4] Mao X. D. Zhong Y. Xu H. Zhang L. P. Sui X. F. et al. (2018). A novel low add-on technology of dyeing cotton fabric with reactive dyestuff. Textile Research Journal 88(12) 1345-1355.

  • [5] Adeel S K. Shumaila R. Sana A. Tayyaba R. Fazal G. et al. (2017). Radiation pretreatment: A potential novel technology to improve fastness properties of plant-derived natural dyes 1(1) 65-87.

  • [6] Haji A. (2017). Improved natural dyeing of cotton by plasma treatment and chitosan coating. Optimization by response surface methodology. Cellulose Chemistry and Technology 51(9-10) 975-982.

  • [7] Karanikas E. K. Kosolia Ch Th. Zarkogianni M Ch. Nikolaidis N F. Tsatsaroni E G. (2013). Effect of enzymatic treatment on the dyeing properties of protein woolfibers. Fibers and Polymers 14(2) 223-229.

  • [8] Molakarimi M. Khajeh M. Haji A. (2016). Effect of plasma treatment and grafting of β-cyclodextrin on color properties of wool fabric dyed with shrimp shell extract. The Journal of the Textile Institute 107(10) 1314-1321.

  • [9] Muhammad N. (2018). Plasma treatment as green technology for dyeing of textile fabrics. Trends in Textile Engineering & Fashion Technology 2(2) 1-6.

  • [10] Zhang J. F. Zhang X. Q. Fang K. J. Shu D. W. Gong J. X. et al. (2017). Effect of the water content of added cotton fabrics on reactive dye fixation in the pad-steam process. Coloration Technology 133(1) 57-64.

  • [11] Haddar W. Ticha M. Guesmi A. Khoffi F. Durand B. (2014). A novel approach for a natural dyeing process of cotton fabric with Hibiscus mutabilis (Gulzuba): process development and optimization using statistical analysis. Journal of Cleaner Production 68(1) 114-120.

  • [12] Benhi H. Bahtiyari M. (2015). Combination of ozone and ultrasound in pretreatment of cotton fabrics prior to natural dyeing. Journal of Cleaner Production 89(1) 116-124.

  • [13] Morakotjinda P. Nitayaphat W. (2015). Dyeing proprieties and color fastness of chitosan treated cotton fabric whit Thian king leaves extract. Applied Mechanics and Materials 749(1) 89-93.

  • [14] Pan Y. Wang W. Gong K. Hurren J. C. Li Q. (2019). Ultrasonic scouring as a pretreatment of wool and its application in low-temperature dyeing. Textile Research Journal 88(10) 1975-1982.

  • [15] Fu S. Hinks D. Hauser P. Ankeny M. (2013). High efficiency ultra-deep dyeing of cotton via mercerization and cationization. Cellulose 20(6) 114-120.

  • [16] Haji A. (2013). Eco-friendly dyeing and antibacterial treatment of cotton. Cellulose Chemistry and Technology 47(3-4) 303-308.

  • [17] Hong K. Bae J. Jin S. Yang J. (2012). Preparation and properties of multi-functionalized cotton fabrics treated by extracts of gromwell and gallnut. Cellulose 19(2) 507-515.

  • [18] Tsatsaroni E. Liakopoulou-Kyriakides M. (1995). Dyeing of cotton and wool fibres with pigments from Crocus sativus—Effect of enzymatic treatment. Dyes and Pigments 36(3) 215-221.

  • [19] Prabhu K. H. Teli D. (2014). Eco-dyeing using Tamarindus indica L. seed coat tannin as a natural mordant for textiles with antibacterial activity. Journal of Saudi Chemical Society 18(6) 864-872.

  • [20] Uddin M. G. (2015). Extraction of eco-friendly natural dyes from mango leaves and their application on silk fabric. Textiles and Clothing Sustainability 1(1) 1-7.

  • [21] Ashis S. Konar A. (2011). Dyeing of textiles with natural dyes. International Journal of Chemical Technology Research 5(5) 2102-2109.

  • [22] Gayo G. Ma. Arteaga A. (2005). Análisis de colorantes de un grupo de tejidos hispanomusulmanes. Revista del Instituto de Patrimonio Histórico Español 5(1) 123-147.

  • [23] Rzedowski J. (2006). Vegetación de México edición digital (1 ed.). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Distrito Federal).

  • [24] Anderson W. (Ed.). (2001). Ochnaceae to Loasaceae. Flora NovoGaliciana (1 ed.). Ann Arbor (MI) University of Michigan Press (MI).

  • [25] Cedano M. M. Villaseñor I. (2004). Usos y nombres comunes de las especies de Cochlospermaceae en México. Etnobiología 4(1) 73-88.

  • [26] Sánchez-Salgado J. Ortiz-Andradea R. R. Aguirre-Crespoa F. Vergara-Galicia J. León-Rivera I. et al. (2007). Hypoglycemic vasorelaxant and hepatoprotective effects of Cochlospermum vitifolium (Willd.) Sprengel: A potential agent for the treatment of metabolic syndrome. Journal of Ethnopharmacology 109(3) 400-405.

  • [27] Xenofonte de Almeida C. Lêda-Gomes de Lemos T. Rocha S. Deusdênia L. (2005). Constituintes químicos voláteis e não-voláteis de Cochlospermum vitifolium (Willdenow) Sprengel. Química Nova 28(1) 57-60.

  • [28] Lewis D. M. Vo L. (2007). Dyeing cotton whit reactive dyes under neutral conditions. Man-Made Textiles in India 8(1) 297-308.

  • [29] Kamel M. M. EL-Shishtawy R. Yussef B. Mashaly H. (2005). Ultrasonic assisted dyeing: III. Dyeing of wool with lac as a natural dye. Dye Pigments 65(2) 103-110.

  • [30] American Association of Textile Chemists and Colorists. (2015). AATCC 61-1B* Method. Colorfastness to Laundering: Accelerated. Retrieved 05 01 2019. Web site: https://www.aatcc.org/test/methods/.

  • [31] American Association of Textile Chemists and Colorists. (2015). AATCC 116 Method. Colorfastness to Crocking: Rotary Vertical Crockmeter Method. Retrieved 05 01 2019. Web site: https://www.aatcc.org/test/methods/.

  • [32] Vankar P. S. (2000). Chemistry of Natural Dyes. Resonance 5(1) 73-80.

  • [33] Shu D. Fang K. Liu X. Cai Y. An F. (2018). High dye fixation pad-steam dyeing of cotton fabrics with reactive dyes based on hydrophobic effect. Journal of Natural Fibers 1(1) 1-11.

  • [34] Vankar P. S. Shanker R. Verma J. (2007). Enzymatic natural dyeing of cotton and silk fabrics without metal mordants. Journal of Cleaner Production 15(15) 1441-1450.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 17
PDF Downloads 35 35 31