Study on the Use of Aerogel on the Surface of Basalt Fabric

Open access

Abstract

The layer of aerogel was applied to the surface of basalt fabric due to the possibility of improving a fabric protecting against the influence of hot environmental factors. The analysis of aerogel surface roughness and thickness of the obtained sample, resistance to contact heat for the contact temperature between 100°C and 250°C, and tests of resistance to the penetration of thermal radiation were carried out. In addition, thermal conductivity, thermal resistance, thermal diffusion, thermal absorption, and surface roughness were determined. The obtained results indicate the unevenness of aerogel application on the surface of basalt fabric. For this reason, work should be carried out on an appropriate technology that will allow them to be applied evenly on the surface of the fabric. The parameters tested and the results obtained are promising in terms of the possibility of using the fabric obtained in protective gloves.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Mazraeh-Shahi Z. T. Shoushtari A. M. Bahramian A. R. Abdouss M. (2014). Synthesis structure and thermal protective behavior of silica aerogel/PET nonwoven fiber composite. Fibers and Polymers 15(10) 2154-2159.

  • [2] Oh K. W. Kim D. K. Kim S. H. (2009). Ultra-porous flexible PET/Aerogel blanket for sound absorption and thermal insulation. Fibers and Polymers 10(5) 731-737.

  • [3] Thapliyal P. C. Singh K. (2014). Aerogels as promising thermal insulating materials: An overview. Journal of Materials 2014 1-10.

  • [4] Greszta A. Krzemińska S. Okrasa M. (2019). Influence of aging factors on the properties of aerogels with different degrees of granulation. Fibres & Textiles in Eastern Europe 27(4)(136) 50-58.

  • [5] Venkataraman M. Mishra R. Kotresh T. M. Militky J. Jamshaid H. (2016). Aerogels for thermal insulation in high-performance textiles. Textile Progress 48(2) 55-118.

  • [6] Venkataraman M. Mishra R. Weiner J. Mazari A. Militky J. et al. (2014). Innovative techniques for characterization of nonwoven insulation materials embedded with aerogel. International Journal of Chemical Molecular Nuclear Materials and Metallurgical Engineering 8(9) 898-905.

  • [7] Krzemińska S. Greszta A. (2018). Application of aerogels in textile materials for protection against heat (in Polish). Przegląd Włókienniczy - Włókno Odzież Skóra 1 33-36.

  • [8] Shaid A. Furgusson M. Wang L. (2014). Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chemical and Materials Engineering 2(2) 37-43.

  • [9] Jiang Y. Zhang L. Xu H. Zhong Y. Mao Z. (2017). Preparation and characterization of thermal protective aluminum hydroxide aerogel/PSA fabric composites. Journal of Sol-Gel Science and Technology 82 370-379.

  • [10] Kumbhar V. P. (2014). An overview: Basalt rock fibers – New construction material. Acta Engineering International 2(1) 11-18.

  • [11] Frydrych I. (2008). Clothing material science - Raw materials on the protective clothing. Part I: Clothing protecting against fire (in Polish). Przegląd Włókienniczy – Włókno Odzież Skóra 6 29-33.

  • [12] Militký J. Kovačič V. Bajzík V. (2007). Mechanical properties of basalt filaments. Fibers & Textiles in Eastern Europe 15(5-6) 49-53.

  • [13] Medvedyev O. Tsybulya Y. (2005). Basalt use in hot gas filtration. Filtration & Separation 42(1) 34-37.

  • [14] Liu X. Wang T. Zhuang M. Xin B. Liu W. (2016). Investigation of the thermal transfer behavior of single layer woven fabrics at different temperatures. Journal of Engineered Fibers and Fabrics 11(1) 9-16.

  • [15] Song G. Mandal S. Rossi R. (Eds.). (2017). Thermal protective clothing for firefighters. Woodhead Publishing Series in Textiles 189 Elsevier Amsterdam.

  • [16] Miśkiewicz P. Frydrych I. Cichocka A. Pawlak W. (2017). Considerations on applying selected techniques of CVD and PVD processes for modifying basalt fabrics used for protective gloves. In: Frydrych I. Bartkowiak G. Pawłowa M. (Eds.) Innovations in protective and e-textiles in balance with comfort and ecology Lodz University of Technology Lodz p. 120-130.

  • [17] Miśkiewicz P. (2018). Selected personal protective equipment for applications in a hot work environment. World Scientific News 109 143-154.

  • [18] Luximon A. (Ed.). (2013). Handbook of footwear design and manufacture. Woodhead Publishing Series in Textiles 141 Elsevier Amsterdam.

  • [19] PN EN ISO 12127-1:2016. Clothing for protection against heat and flame – Determination of contact heat transmission through protective clothing or constituent materials – Part 1: Contact heat produced by heating cylinder.

  • [20] PN EN 407:2007. Protective gloves against thermal risks (heat and/or fire).

  • [21] PN EN ISO 6942:2005. Protective clothing – Protection against heat and fire – Method of test: Evaluation of materials and materials assemblies when exposed to a source of radiant heat.

  • [22] Hes L. Dolezal I. (2018). Indirect measurement of moisture absorptivity of functional textile fabrics. Journal of Physics: Conference Series 1065 1-4.

  • [23] Mangatasifmangat A. E. Hes L. Bajzik V. Mazari A. (2018). Thermal absorptivity model of knitted rib fabric and its experimental verification. Autex Research Journal 18(1) 20-27.

  • [24] ISO 4287:1997. Geometrical Product Specifications (GPS) – Surface texture: Profile method - Terms definitions and surface texture parameters.

  • [25] Matusiak M. (2015). Digieye application in cotton colour measurement. Autex Research Journal 15(2) 77-86.

  • [26] Malm V. Straat M. Walkenstrom P. (2014). Effects of surface structure and substrate color on color differences in textile coatings containing effect pigments. Textile Research Journal 84(2) 125-139.

  • [27] ISO 11664-4:2008(E)/CIE S 014-4/E:2007 Colorimetry – Part 4: CIE 1976 L*a*b* Colour Space.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 18
PDF Downloads 38 38 14