Review of Printed Fabric Pattern Segmentation Analysis and Application

Open access

Abstract

Image processing of digital images is one of the essential categories of image transformation in the theory and practice of digital pattern analysis and computer vision. Automated pattern recognition systems are much needed in the textile industry more importantly when the quality control of products is a significant problem. The printed fabric pattern segmentation procedure is carried out since human interaction proves to be unsatisfactory and costly. Hence, to reduce the cost and wastage of time, automatic segmentation and pattern recognition are required. Several robust and efficient segmentation algorithms are established for pattern recognition. In this paper, different automated methods are presented to segregate printed patterns from textiles fabric. This has become necessary because quality product devoid of any disturbances is the ultimate aim of the textile printing industry.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Gonzalez R. C. Woods R. E. (1992). Digital image processing. Addison-Wesley (Reading).

  • [2] Lo W. Y. Puchalski S. M. (2008). Digital image processing. Veterinary Radiology & Ultrasound 49 S42-S47.

  • [3] Rafsanjani M. K. Varzaneh Z. A. Chukanlo N. E. (2012). A survey of hierarchical clustering algorithms. The Journal of Mathematics and Computer Science 5(3) 229-240.

  • [4] Burney S. A. Tariq H. (2014). K-means cluster analysis for image segmentation. International Journal of Computer Applications 96(4) 1-8.

  • [5] Chabrier S. Rosenberger C. Emile B. Laurent H. (2008). Optimization-based image segmentation by genetic algorithms. Journal on Image and Video Processing 2008 10.

  • [6] Chung F.-L. Fu T. C. Ng V. Luk R. W. P. (2004). An evolutionary approach to pattern-based time series segmentation. IEEE Transactions on Evolutionary Computation 8(5) 471-489.

  • [7] Freixenet J. Muñoz X. Raba D. Martí J. Cufí X. (2002). Yet another survey on image segmentation: region and boundary information integration. Computer Vision—ECCV 2002 2002 21-25.

  • [8] Kang W.-X. Yang Q.-Q. Liang R.-P. (2009). The comparative research on image segmentation algorithms. In Education Technology and Computer Science 2009. ETCS’09. First International Workshop on. 2009. IEEE.

  • [9] Jeon B. S. Bae J. H. Suh M. W. (2003). Automatic recognition of woven fabric patterns by an artificial neural network. Textile Research Journal 73(7) 645-650.

  • [10] Zaitoun N. M. Aqel M. J. (2015). Survey on image segmentation techniques. Procedia Computer Science 65 797-806.

  • [11] Gionis A. Terzi E. (2007). Segmentations with rearrangements. In Proceedings of the 2007 SIAM International Conference on Data Mining SIAM.

  • [12] Xing Y. Ou Y. Englander S. Schnall M. Shen D. (2007). Simultaneous estimation and segmentation of T1 map for breast parenchyma measurement. In Biomedical Imaging: from Nano to Macro 2007. ISBI 2007. 4th IEEE International Symposium on IEEE.

  • [13] Kuo C.-F.J. Su T.-L. Huang Y.-J. (2007). Computerized color separation system for printed fabrics by using backward-propagation neural network. Fibers and Polymers 8(5) 529-536.

  • [14] Hann M. (2003). Conceptual developments in the analysis of patterns part two: the application of the principles of symmetry.

  • [15] Hann M. (2003). Conceptual developments in the analysis of patterns part one: the identification of fundamental geometrical elements.

  • [16] Bezdek J. C. (1981). Objective function clustering in Pattern recognition with fuzzy objective function algorithms. Springer 43-93.

  • [17] Bezdek J. C. Hall L. Clarke L. P. (1993). Review of MR image segmentation techniques using pattern recognition. Medical Physics 20(4) 1033-1048.

  • [18] Kuo C.-F. J. Shih C.-Y. Kao C.-Y. Lee J.-Y. (2005). Color and pattern analysis of printed fabric by an unsupervised clustering method. Textile Research Journal 75(1) 9-12.

  • [19] Mo H. Xu B. Ouyang W. Wang J. (2017). Color segmentation of multi-colored fabrics using self-organizing-map based clustering algorithm. Textile Research Journal 87(3) 369-380.

  • [20] Awad M. (2010). Segmentation of satellite images using Self-Organizing Maps in Self-Organizing Maps. InTech.

  • [21] El-Melegy M. et al. (2007). On cluster validity indexes in fuzzy and hard clustering algorithms for image segmentation. In Image Processing 2007. ICIP 2007. IEEE International Conference on. IEEE.

  • [22] Kuo C.-F.J. Shih C.-Y. Lee J.-Y. (2005). Repeat pattern segmentation of printed fabrics by Hough transform method. Textile Research Journal 75(11) 779-783.

  • [23] Kuo C.-F.J. Shih C.-Y. Lee J.-Y. (2008). Separating color and identifying repeat pattern through the automatic computerized analysis system for printed fabrics. Journal of Information Science & Engineering 24(2) 453-467.

  • [24] Kuo C.-F.J. Shih C.-Y. (2011). Printed fabric computerized automatic color separating system. Textile Research Journal 81(7) 706-713.

  • [25] Lucieer V. Lucieer A. (2009). Fuzzy clustering for seafloor classification. Marine Geology 264(3-4) 230-241.

  • [26] Fujiwara H. Zhang Z. Hatta H. Koshimizu H. (2004). Visual inspection of textile surfaces with translation invariant wavelet shrinkage. In Industrial Electronics Society 2004. IECON 2004. 30th Annual Conference of IEEE IEEE.

  • [27] Firdaus S. Uddin M. A. (2015). A survey on clustering algorithms and complexity analysis. International Journal of Computer Science Issues (IJCSI) 12(2) 62.

  • [28] Willis K. D. Xu C. Wu K. J. Levin G. Gross M. D. (2011). Interactive fabrication: new interfaces for digital fabrication. In Proceedings of the fifth international conference on Tangible Embedded and Embodied Interaction ACM.

  • [29] Clarke S. E. B. Harris J. (2012). Digital visions for fashion and textiles: Made in code. Thames and Hudson Ltd.

  • [30] Yu H. Winkler S. (2013). Image complexity and spatial information. In Quality of Multimedia Experience (QoMEX) 2013 Fifth International Workshop on IEEE.

  • [31] Guruprasad R. Behera B. (2010). Soft computing in textiles.

  • [32] Tan P.-N. Steinbach M. Kumar V. (2013). Data mining cluster analysis: basic concepts and algorithms. Introduction to Data Mining.

  • [33] Baratis E. Petrakis E. G. Milios E. E. (2008). Automatic website summarization by image content: a case study with logo and trademark images. IEEE Transactions on Knowledge & Data Engineering 9 1195-1204.

  • [34] Jia W. McKenna S. J. Ward A. A. (2009). Extracting printed designs and woven patterns from textile images. In VISAPP 1 Citeseer.

  • [35] Milanović M. Stamenković M. (2010). Data mining and segmentation of time series for knowledge discovery. In Proceedings of the International Scientific Conference – The Challenges of Economic Science and Practice in the 21st Century.

  • [36] Everingham M. Muller H. Thomas B. (2002). Evaluating image segmentation algorithms using the Pareto front. In European Conference on Computer Vision. Springer.

  • [37] Gionis A. Mannila H. (2005). Segmentation algorithms for time series and sequence data. In Tutorial at 5th SIAM International Conference on Data Mining.

  • [38] Kopenkov V. (2016). Development of computational procedure of local image processing based on the usage of hierarchical regression.

  • [39] Drobina R. Machnio M. S. (2006). Application of the image analysis technique for textile identification. Autex Research Journal 6(1) 40-48.

  • [40] Jeyakumar M. (2012). Time complexity analysis of binary space partitioning scheme for image compression. arXiv preprint arXiv:1211.2037.

  • [41] Kugiumtzis D. Tsimpiris A. (2010). Measures of analysis of time series (MATS): a MATLAB toolkit for computation of multiple measures on time series data bases. arXiv preprint arXiv:1002.1940.

  • [42] Carreira-Perpinan M. A. (2001). Continuous latent variable models for dimensionality reduction and sequential data reconstruction. University of Sheffield (UK).

  • [43] Raj D. Singal P. (2017). Reducing the computational complexity of A 2d Gaussian filter for image processing (an overview). International Journal of Advance Research Ideas and Innovations in Technology 3(3) 514-517.

  • [44] Bingham E. Gionis A. Haiminen N. Hiisilä H. Mannila H. et al. (2006). Segmentation and dimensionality reduction. In Proceedings of the 2006 SIAM International Conference on Data Mining. SIAM (Bethesda).

  • [45] Hand D. J. (2007). Principles of data mining. Drug Safety 30(7) 621-622.

  • [46] Bieniecki W. Grabowski S. (2004). Nearest neighbor classifiers for color image segmentation. In Modern Problems of Radio Engineering Telecommunications and Computer Science 2004. Proceedings of the International Conference IEEE.

  • [47] Ueno K. Xi X. Keogh E. J. Dah-Jye L (2006). Anytime classification using the nearest neighbor algorithm with applications to stream mining. In null IEEE.

  • [48] Acharjya P. P. Ghoshal D. (2012). A new image segmentation algorithm for grid computing. International Journal of Scientific and Research Publications 2(10).

  • [49] Raj D. Singal P. (2017). The computation complexity reduction of 2-D Gaussian filter. International Research Journal of Engineering and Technology 4(6).

  • [50] Vidyarthi A. Kansal A. (2012). A survey report on digital images segmentation algorithms. International Journal of Computer Engineering & Technology (IJCET) 3(2) 85-91.

  • [51] Araujo A. (2010). Repetition pattern and the domestic: notes on the relationship between pattern and homemaking. Textile 8(2) 180-201.

  • [52] López-Rodríguez P. Fernández-Recio R. Bravo I. Gardel A. Lázaro J. L. et al. (2013). Computational burden resulting from image recognition of high resolution radar sensors. Sensors 13(4) 5381-5402.

  • [53] Ngan H. Y. Pang G. K. Yung N. H. (2011). Automated fabric defect detection – a review. Image and Vision Computing 29(7) 442-458.

  • [54] Kumah C. Zhang N. Raji R.K. and Pan R. (2019) Color Measurement of Segmented Printed Fabric Patterns in Lab Color Space from RGB Digital Images. Journal of Textile Science and Technology 5 1-18. https://doi.org/10.4236/jtst.2019.51001

  • [55] Aly A. A. Deris S. B. Zaki N. (2011). Research review for digital image segmentation techniques. International Journal of Computer Science & Information Technology 3(5) 99.

  • [56] Murtagh F. (2002). Clustering in massive data sets. In Abello J. Pardalos P. M. Resende M. G. C. (eds) Handbook of massive data sets. Springer (Boston MA) 501-543.

  • [57] Hirano Y. Garcia C. Sukthankar R. Hoogs A. (2006). Industry and object recognition: Applications applied research and challenges. In Ponce J. Hebert M. Schmid C. Zisserman A. (eds.) Toward Category-Level Object Recognition Springer (Berlin Heidelberg) 49-64.

  • [58] Strzecha K. Fabijańska A. Sankowski D. (2006). Segmentation algorithms for industrial image quantitative analysis systems. In XVIII IMEKO World Congress Metrology for a Sustainable Development.

  • [59] Hewage R. Sonnadara D. (2011). Colour image segmentation technique for screen printing. Proceedings of the Technical Sessions 27 60-67.

  • [60] Rajarajan J. Kalivarathan D. G. (2012). Influence of local segmentation in the context of digital image processing–a feasibility study. International Journal of Computer Engineering & Technology (IJCET) 3(3) 340-347.

  • [61] Zhang Y. Lu Z. Li J. (2010). Fabric defect classification using radial basis function network. Pattern Recognition Letters 31(13) 2033-2042.

  • [62] PVPIT B. Fabric Defect Detection with Thresholding and Morphological based Segmentation Methods and Classification Using Neural Network.

  • [63] Boydell C. Schoeser M. (2008). Disentangling textiles: techniques for the study of designed objects (with authored chapter Textiles in the modern home pp 81-94). Middlesex University Press.

  • [64] Kristensen Johnstone T. (2014). The impact of scale on a block-repeated surface pattern in spatial contexts.

  • [65] Dobrea D. M. Blaga M. (2007). Genetic algorithm for textile pattern recognition. in 1st Aachen–Dresden International Textile Conference.

  • [66] Chen S. Zhang D. (2004). Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics) 34(4) 1907-1916.

  • [67] Perez R. Silvestre J. Munoz J. (2004). Defect detection in repetitive fabric patterns. Proceeding of Visualization Imaging and Image Processing September 6-8.

  • [68] Lu X. (2011). Multiscale Segmentation Techniques for Textile Images. In Image Segmentation. 2011 InTech.

  • [69] Cheng H. Bouman C. A. (2001). Multiscale Bayesian segmentation using a trainable context model. IEEE Transactions on Image Processing 10(4) 511-525.

  • [70] Choi H. Baraniuk R. G. (2001). Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing 10(9) 1309-1321.

  • [71] Fan G. Xia X.-G. (2000). Maximum likelihood texture analysis and classification using wavelet-domain hidden Markov models. IN ASILOMAR Conference on Signals Systems and Computers. Citeseer.

  • [72] Li P. et al. (2015). The real-time vision system for fabric defect detection with combined approach. In International Conference on Image and Graphics. Springer.

  • [73] Erhardt-Ferron A. (2000). Theory and applications of digital image processing. University of Applied Sciences Offenburg 1(2) 3.

  • [74] Gupta G. (2014). Introduction to data mining with case studies. PHI Learning Pvt. Ltd (Delhi).

  • [75] Kraft K. (2004). Textile patterns and their epistemological functions. Textile 2(3) 274-289.

  • [76] Chen X. Huang X. (2004). Evaluating fabric pilling with light-projected image analysis. Textile Research Journal 74(11) 977-981.

  • [77] Briggs-Goode A. Russell A. (2011). Printed textile design in Textile Design. Elsevier 105-129e.

  • [78] COGNEX. 2018 [cited 2018 7/8/2018]; Web site: https://www.cognex.com/.

  • [79] Guruprasad R. Behera B. K. (2009). Automatic fabric inspection systems. [cited 2018 8/9/2018]; Web site: http://www.indiantextilejournal.com/articles/FAdetails.asp?id=2131.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 12
PDF Downloads 33 33 20