Study of the Properties and Cells Growth on Antibacterial Electrospun Polycaprolactone/Cefuroxime Scaffolds

Budimir Mijovic 1 , Emilija Zdraveva 1 , Emi Govorčin Bajsić 2 , Igor Slivac 3 , Iva Dekaris 4 , Tamara Holjevac Grgurić 5  and Tea Zubin Ferri 6
  • 1 University of Zagreb, 10000, Zagreb, Croatia
  • 2 University of Zagreb, 10000, Zagreb, Croatia
  • 3 University of Zagreb, 10000, Zagreb, Croatia
  • 4 Specialty Eye Hospital Svjetlost, 10000, Zagreb
  • 5 University of Zagreb, 44000, Sisak, Croatia
  • 6 Materials’ Research Center METRIS, 52100, Pula, Croatia


Electrospun materials are good candidates for the design of tissue regeneration scaffolds as they can simulate the natural surroundings of tissue cells. The study proposes electrospun polycaprolactone (PCL)/cefuroxime (CFU) scaffolds for human cell culture and investigates the influence of the antibiotic content on scaffold morphology, thermal and mechanical properties. The increase in the CFU concentration resulted in the reduction of fiber diameter and number of deformations. It also influenced the reduction of scaffold thermal enthalpies and improved scaffold break strength. With regard to cell growth, the scaffolds showed precedence in greater colonization of the HeLa cells. Finally, these scaffolds showed compatibility with standard human cell lines, and thus they can be used for the repair of damaged tissues.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Zdraveva, E., Fang, J., Mijovic, B., Lin, T. (2016). Structure and properties of high-performance fibers; (Bhat, G., ed.) Woodhead Publishing in Association with the Textile Institute, by Elsevier: Cambridge.

  • [2] Mijović, B., Tominac Trcin, M., Agić, A., Zdraveva, E., Bujić, M., et al. (2012). Study on Cell Adhesion Detection onto Biodegradable Electrospun PCL Scaffolds. Journal of Fiber Bioengineering & Informatics, 5(1), 33-40.

  • [3] Zdraveva, E., Magovac, E., Mijovic, B. (2016). Elektroispredanje – značajna tehnika 21. stoljeća. Tekstil: časopis za tekstilnu tehnologiju i konfekciju, 65(11-12), 397-409.

  • [4] Tominac Trcin, M., Dekaris, I., Mijović, B., Bujić, M., Zdraveva, E., et al. (2015). Synthetic vs natural scaffolds for human limbal stem cell cultivation. Croatian medical journal, 56(3), 246-256.

  • [5] Stevens, M. M., George, J. H. (2005). Exploring and engineering the cell surface interface, Science, 310(5751), 1135-1138.

  • [6] Li Loh, Q., Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering: Part B, 19(6), 485-502.

  • [7] He, J.-H., Liu, Y., Mo, L.-F., Wan, Y.-Q., Xu, L. (2008). Electrospun Nanofibres and Their Applications, iSmithers, Shawbury, Shrewsbury, Shropshire.

  • [8] Han, J., Chen, T.-X., Branford-White, C. J., Zhu, L.-M. (2009). Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. International Journal of Pharmaceutics, 382(1-2), 215-221.

  • [9] Ranganath, S. H., Wang, C.-H. (2008). Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials, 29(20), 2996-3003.

  • [10] Dai, J., Jin, J., Yang, S., Li, G. (2017). Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment. Matererials Research Express, 4(7), 075403-075500.

  • [11] Ignatova, M. G., Manolova, N. E., Toshkova, R. A., Rashkov, I. B., Gardeva, E., et al. (2010). Electrospun Nanofibrous Mats Containing Quaternized Chitosan and Polylactide with In Vitro Antitumor Activity against HeLa Cells. Biomacromolecules, 11(6), 1633-1645.

  • [12] Luo, X., Xie, C., Wang, H., Liu, C., Yan, S., et al. (2012). Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. International Journal of Pharmaceutics, 425(1-2), 19-28.

  • [13] Chong, C., Wang, Y., Maitz, P. K. M., Simanainen, U., Li, Z. (2013). An electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing. Burns & Trauma, 1(2), 95-101.

  • [14] Suga, T., Xuyen, N. T., Matsumoto, K., Jikei, M., Takahashi, K., et al. (2017). Enhanced proliferation of HeLa cells on PLLA-PCL and PLGA-PCL multiblock copolymers. Polymer Journal, 49(7), 567-573.

  • [15] Heydari, Z., Mohebbi-Kalhori, D., Afarani, M. S. (2017). Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Materials Science & Engineering. C Materials for Biological Applications, 81, 127-132.

  • [16] Denizot, F., Lang, R. J. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271-277.

  • [17] Johnson, C. D., D’Amato, A. R., Gilbert, R. J. (2016). Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties. Cells Tissues Organs, 202(1-2), 116-135.

  • [18] Ero-Phillips, O., Jenkins, M., Stamboulis, A. (2012). Tailoring Crystallinity of Electrospun Plla Fibres by Control of Electrospinning Parameters. Polymers, 4(3), 1331-1348.

  • [19] Vacanti, N. M., Cheng, H., Hill, P. S., Guerreiro, J. D. T., Dang, T. T., et al. (2012). Localized Delivery of Dexamethasone from Electrospun Fibers Reduces the Foreign Body Response. Biomacromolecules, 13(10), 3031-3038.

  • [20] Chou, S.-F., Woodrow, K. A. (2017). Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. Journal of the Mechanical Behaviour of Biomedical Materials, 65, 724-733.


Journal + Issues