The Study on Effects of Walking on the Thermal Properties of Clothing and Subjective Comfort

Open access


Former studies done by other authors investigated the first- and second-layered air gaps beneath the clothing garments. None of the previous studies reported multidisciplinary clothing design testing approach linking both the objective measuring methods and subjective responses, while testing the thermal properties linked to a microclimatic volume formed between the layers of garments forming the ensemble. Neither was determined the limiting value of the microclimatic volume for outerwear garments, after which the thermal insulation will start to decrease due to convection. By taking the advantage of the precise three-dimensional (3D) body scanning technology and reverse engineering 3D CAD tool, the volume of the microclimatic air layers formed under outerwear garments was determined to study the impact of the ensemble’s microclimatic volume on the overall insulation value, measured by means of the thermal manikin. The jacket with the smaller microclimatic volume provided 5.2–13.5% less insulation than wider jackets, while the ensembles with tighter jackets showed 0.74–1.9% less insulation in static and 0.9– 2.7% more insulation in dynamic conditions, thus proving that the limiting value of the microclimatic volume is greater than previously reported for three-layered ensembles. The effective thermal insulation value was reduced in average by 20.98–25.34% between standing and moving manikins. The thermal manikins are designed for steadystate measurements and do not work well under transient conditions, so three human subjects were employed as evaluators of the clothing thermal quality. In cooler climatic conditions, the measured physiological parameters and subjects’ grades pointed to discomfort while wearing ensembles with tighter jackets.

[1] Taya, Y., Ohno, S., Mihira, K. (1982). Measurements of the clothing microclimate volumes (part I) – a method of measurement of clothing microclimate volumes and its evaluation. Journal of Home Economics of Japan, 33(7), 374-379, DOI:10.11428/jhej1951.33.374.

[2] Parkova, I., Vilumsone, A. (2011). Microclimate of smart garment. Scientific Journal of Riga Technical University, 6, 99-103

[3] Özdemir, H. (2017). Thermal comfort properties of clothing fabrics woven with polyester/cotton blend yarns. AUTEX Research Journal, 17(12), 135-141

[4] Daanen, H., Hatcher, K., Havenith, G. (2002). Determination of clothing microclimate volume. In: Proceedings of the 10th International Conference on Environmental Ergonomics. Tochihara, Y., Ohnaka. T. (Ed.). Kyushu Institute of Design (Fukuoka, Japan), 665-668.

[5] Mert, E., Böhnisch, S., Psikuta, A., Bueno, M.-A., Rossi, R. M. (2016). Contribution of garment fit and style to thermal comfort at the lower body. International Journal of Biometeorology, 60(12), 1995-2004, DOI:10.1007/s00484-016-1258-0.

[6] McQuerry et al. (2018)

[7] Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M.- A., Rossi, R. M. (2015). Effect of garment properties on air gap thickness and the contact area distribution. Textile Research Journal, 85(18), 1907-1918. doi:10.1177/0040517514559582.

[8] Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M.-A., Rossi, R. M. (2015). Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition. Textile Research Journal, 85(20), 2196–2207, DOI:10.1177/0040517514551458.

[9] Lee, Y., Hong, K., Hong, S. A. (2007). 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation. Applied Ergonomics, 38, 349-355.

[10] Spencer-Smith, J. L. (1977). The physical basis of clothing comfort, part 2: Heat transfer through dry clothing assemblies. Clothing Research Journal, 5(1), 3-17.

[11] Nielsen, R., Olesen, B. W., Fanger, P. O. (1985). Effect of physical activity and air velocity on the thermal insulation of clothing. Ergonomics, 28(12): 1617-1631, DOI:10.1080/00140138508963299

[12] Havenith, G., Heus, R., Lotens, W. A. (1990). Resultant clothing insulation: a function of body movement, posture, wind, clothing fit and ensemble thickness. Ergonomics, 33(1), 67-84.

[13] Havenith, G. (2002). The interaction of clothing and thermoregulation, Exogenous Dermatology 1(5): 221-230.

[14] Morrissey, M. P., Rossi, R. M. (2013). The effect of wind, body movement and garment adjustments on the effective thermal resistance of clothing with low and high air permeability insulation. Textile Research Journal, 84(6), 583–592, DOI:10.1177/0040517513499431.

[15] Psikuta, A., Mert, E., Annaheim, S., Rossi, R. M. (2018). Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response. International Journal of Biometeorology, 62(7), 1121–1134. doi:10.1007/s00484-018-1515-5.

[16] Clark, R. P., de Calcina-Goff, M. L. (2009). Some aspects of the airborne transmission of infection. Journal of the Royal Society Interface, 6(6), 767-782.

[17] Ersting’s Aviation Medicine, Fourth edition. (2006). Rainford, D. J., Gradwell, D.P. (Ed.). Hodder Education (London, UK), ISBN 978-0-340-81319-5.

[18] Havenith, G. (2005). Clothing heat exchange models for research and application. In: Proceedings of 11th International Conference on Environmental Ergonomics. Holmer, I., Kuklane, K., Gao, C. (Ed.). Lund University (Ystad, Sweden), 66-73.

[19] International Encyclopaedia of Ergonomics and Human Factors, Volume 1, 2nd edition. (2006). Karwowski, W. (Ed.). CRC Press, Taylor & Francis Group (Florida, USA), ISBN 978-0-415-30430-6.

[20] Mert, E., Psikuta, A., Bueno, M.-A., Rossi, R. M. (2015). Effect of heterogenous and homogenous air gaps on dry heat loss through the garment. International Journal of Biometeorology, 59, 1701-1710, DOI: 10.1007/s00484-015-0978-x.

[21] Studies in Environmental Science 10: Bioengineering, thermal physiology and comfort. (1981). Cena, K., Clark, J.A. (Ed.). Elsevier Scientific Publishing Company (Amsterdam, The Netherlands), ISBN 0-444-99761-X.

[22] Mert, E., Böhnisch, S., Psikuta, A., Bueno, M. A. (2015). Determination of the air gap thickness underneath the garment for lower body using 3D body scanning. In: Proceedings of the 6th International Conference on 3D Body Scanning Technologies. D’Apuzzo, N. (Ed.). Homometrica Consulting (Lugano, Switzerland), 114-119.

[23] MacRea, B. A., Laing, R. M., Wilson, C. A. (2011). Importance of air spaces when comparing fabric thermal resistance. Textile Research Journal, 81(19), 1962-1965, DOI: 10.1177/0040517510395995.

[24] Li, J., Zhang, Z., Wang, Y. (2013). The relationship between air gap sizes and clothing heat transfer performance. The Journal of the Textile Institute, 104(12), 1327-1336, DOI:1 0.1080/00405000.2013.802080.

[25] Psikuta, A., Frackiewicz-Kaczmarek, J., Frydrych, I., Rossi, R. M. (2012). Quantitative evaluation of air gap thickness and contact area between body and garment. Textile Research Journal, 82(14), 1405–1413, DOI: 10.1177/0040517512436823.

[26] Zhang, Z.-H., Li, J. (2010). The relationship of garment fit and thermal comfort. In: TBIS 2010 - Textile Bioengineering and Informatics Symposium Proceedings. Li, Y., Qui, Y. P., Luo, X. N., Li, J. - S. (Ed.). Textile Bioengineering and Informatics Society Limited (Hong Kong), 1–3, 1333-1337, ISSN 1942 – 3438.

[27] Zhang, Z., Li, Y. (2011). Volume of air gaps under clothing and its related thermal effects. Journal of Fiber Bioengineering & Informatics, 4(2), 137-144.

[28] Zhang, Z., Li, J., Wang, Y. (2015). Improving garment thermal insulation property by combining two non – contact measuring tool. Indian Journal of Fibre and Textile Research, 40, 392-398.

[29] Mert, E., Psikuta, A., Arévalo, M., Charbonnier, C., Luible- Bär, C., Bueno, M.-A., Rossi, R. M. (2018). A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking. Measurement, 117, 153-164, DOI:10.1016/j.measurement.2017.11.042.

[30] Jussila, K., Kekäläinen, M., Simonen, L., Mäkinen, H. (2015). Determining the optimum size combination of threelayered cold protective clothing in varying wind conditions and walking speeds: thermal manikin and 3D Body Scanner Study. Journal of Fashion Technology & Textile Engineering, 3(2), DOI:10.4172/2329-9568.1000120.

[31] Špelić, I. (2018). Changes in Ensembles’ Thermal Insulation According to Garment’s Fit and Length Based on Athletic Figure. Fibers and Polymers 2018, 19(6), 1278-1287, DOI 10.1007/s12221-018-1074-8

[32] Holmér, I., Gavhed, C. E., Grahn, S., Nilsson, H. O. (1992). Effects of wind and body movements on clothing insulation – measurement with a moveable thermal manikin. In: Proceedings of the 5th international conference on environmental ergonomics. Lotens, W., Havenith, G. (Ed.), TNO-Intstitute of Perception (Soesterberg, The Netherlands), 66-67, ISBN 90-6743-227-X.

[33] Holmér, I., Nilsson, H., Meinander, H. (1996). Evaluation of clothing heat transfer by dry and sweating manikin measurements. In: Performance of protective clothing, fifth volume, ASTM 1237. Johnson, J. S., Mansdorf, S. Z. (Ed.). American Society for Testing and Materials International (Philadelphia, USA).

[34] Holmér, I., Nilsson, H. O., Anttonen, H. (2002). Prediction of wind effects on cold protective clothing. In: RTO HFM Symposium on “Blowing Hot and Cold: Protecting Against Climatic Extremes”, RTO/NATO (Neuilly-sur-Seine Cedex, France), ISBN 92-837-1082-7.

[35] Lim, J., Choi, H., Roh, E. K., Yoo, H., Kim, E. (2015). Assessment of airflow and microclimate for the running wear jacket with slits using CFD simulation. Fashion and Textiles, 2 (1), DOI:10.1186/s40691-014-0025-2

[36] Wagner, A., Dorawa, P. (2016). Research on biophysical properties of protective clothing. AUTEX Research Journal, 16(4), 236-240.

[37] ISO 3801:1977 Textiles - Woven fabrics - Determination of mass per unit length and mass per unit area. ISOInternational Organization for Standardization, 1977

[38] ISO 5084:1996 Textiles - Determination of thickness of textiles and textile products. ISO-International Organization for Standardization, 1996

[39] ISO 9237:1995 Textiles – Determination of the permeability of fabrics to air. ISO-International Organization for Standardization, 1995

[40] ISO 11092:1993 Physiological effects – Measurement of thermal and water – vapour resistance under steady – state conditions (Sweating guarded – hotplate test). ISOInternational Organization for Standardization, 1993.

[41] Špelić, I. (2016). Impact of construction parameters on thermal properties of clothing. Ph.D. Thesis. University of Zagreb, Faculty of Textile Technology (Zagreb, Croatia)

[42] Stanković, S. B., Popović, D., Poparić, G. B. (2008). Thermal properties of textile fabrics made of natural and regenerated cellulose fibers. Polymer Testing, 27, 41–48

[43] Pan, N., Gibson, P. (Ed.). (2006). Thermal and moisture transport in fibrous material. Woodhead Publishing Ltd. (Cambridge, United Kingdom), ISBN 978-1-84569-057-1.

[44] Amirova, Z. K., Sakulina, O. V. (1985). Izgotovlenie spetsialnoi i sportivnoi odezhdy. Legprombytizdat (Moskva, Russia).

[45] Moll, M. J., Wright, V. (1972). An objective clinical study of chest expansion. Annals of the Rheumatic Diseases, 31(1), 1-8.

[46] Myers-McDevitt, P. J. (2009). Complete guide to size specification and technical design. Fairchild Books (New York, United States of America).

[47] Yoon, S.-H., Lee, J. (2016). Computing the surface area of three-dimensional scanned human data, Symmetry, 8 (67), DOI:10.3390/sym8070067

[48] Zhang, Z. H., Wang, Y., Li, J. (2011). Model for predicting the effect of an air gap on the heat transfer of a clothed human body. Fibres & Textiles in Eastern Europe, 19(4), 105-110.

[49] ISO 15831:2004 Clothing - Physiological effects - Measurement of thermal insulation by means of a thermal manikin. ISO-International Organization for Standardization, 2004.

[50] ISO 13402 - 3:2004 Size designation of Clothes, Part 3: Measurements and intervals, ISO - International Organization for Standardization, 2004.

[51] ISO/TR 10652:1991 Technical report: Standard sizing system for clothes, 1st ed. ISO - International Organization for Standardization, 1991.

[52] McCullough, E. A. (2009). Evaluation of cold weather clothing using manikins, ch. 11. In: Textiles for cold weather apparel. Woodhead Publishing in Textiles: No. 93. Williams, J.T. (Ed.). Woodhead Publishing Ltd. (Cambridge, United Kingdom), 244-255, ISBN 978-1-84569-411-1.

[53] Lotens, W. A., Havenith, G. (1991). Calculation of clothing insulation and vapour resistance. Ergonomics, 34 (2), 233-254, DOI:10.1080/00140139108967309

[54] Li, Y. (2005). Perceptions of temperature, moisture and comfort in clothing during environmental transients. Ergonomics, 48(3), 234-248, DOI:10.1080/001401304200 0327715.

[55] ISO 10551:2001 Ergonomics of the thermal environment - Assessment of the influence of the thermal environment using subjective judgment scales, ISO - International Organization for Standardization, 2001.

[56] Protective Clothing: Managing Thermal Stress. (2014). Woodhead Publishing Series in Textiles: No. 154. (2014). Wang, F., Gao, C. (Ed.). Woodhead Publishing Ltd. (Cambridge, United Kingdom), ISBN 978-1-78242-032-3.

[57] ISO 14058:2004 Protective clothing - Garment for protection against cool environments. ISO-International Organization for Standardization, 2004.

[58] Gavhed, D. (2003). Human response to cold and wind. NR 2003:4. National Institute for Working Life & authors (Stockholm, Sweden).

[59] ISO 9886:2004 Ergonomics-Evaluation of thermal strain by physiological measurements, ISO-International Organization for Standardization, 2004.

[60] ASHRAE Handbook Fundamentals (SI ed.). Atlanta, United States of America: American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc. (2005). ISBN 1931862702.

[61] Du Bois, D., Du Bois, E.F. (1916). A formula to estimate the approximate surface area if height and weight be known. Archives of Internal Medicine, 17(6), 863–871, DOI:10.1001/archinte.1916.00080130010002.

[62] Niedermann, R., Psikuta, A., Rossi, R. M. (2014). Prediction of body temperature in humans using noninvasive measurement methods. International Journal of Biometeorology. 58(1), 7-15, DOI: 10.1007/s00484-013-0687-2.

[63] Boguslawska-Baczek, M., Hes, L. (2013). Effective water vapour permeability of wet wool fabric and blended fabrics. Fibres & Textiles in Eastern Europe, 21(1), 67-71.

[64] Lotens, W. A. (1988). Comparison of thermal predictive models for clothed humans. ASHRAE Transactions, 91, 1321-1340.

[65] Liz, W., Lian, Z., Deng, Q. (2015). Use of mean skin temperature in evaluation of individual thermal comfort for a person in a sleeping posture under steady thermal environment. Indoor and Built Environment, 24 (4), 489-499.

[66] Lenhardt, R., Sessler, D.T. (2006). Estimation of mean – body temperature from mean – skin and core temperature. Anesthesiology, 105(6), 1117-1121.

[67] Hes, L., Ursache, M. (2011). Effect of composition of knitted fabrics on their cooling efficiency at simulated sweating. Short Communication. Indian Journal of Fibre & Textile Research, 36, 281-284.

[68] Ilmarrinen, R., Tammela, E. (1997). Functional cold protective clothing – a combination of many properties. In: Report of 4th seminar on personal protective equipment in Europe. Jurvelius, H. (Ed.). Finnish Institute of Occupational Health (Kittilä, Finland), 137-144.

[69] Lu, Y., Song, G., Li, J. (2014). A novel approach for fit analysis of thermal protective clothing using threedimensional body scanning. Applied Ergonomics, 45(6), 1439e-1446.

[70] Wang, F., Peng, H., Shi, W. (2016). The relationship between air layers and evaporative resistance of male Chinese ethnic clothing. Applied Ergonomics, 56, 194– 202, DOI:10.1016/j.apergo.2016.04.005.

[71] McQuerry, M., DenHartog, E., Barker, R. (2016). Evaluating turnout composite layering strategies for reducing thermal burden in structural firefighter protective clothing systems. Textile Research Journal, 87(10), 1217–1225, DOI:10.1177/0040517516651101.

[72] Ng, S. F., Hui, C. L., Tam, F. Y. (2002). Analysis of fabric drape and garment drape. Research Journal of Textile and Apparel, 6(2), 65-74, DOI:10.1108/RJTA-06-02-2002-B006

[73] Kakitsuba, N., Michna, H., Mekjavić, I. B. (1987). Clothing surface area as related to body volume and clothing microenvironment volume. Aviation, Space and Environmental Medicine, 58(5), 411-416.

[74] Improving comfort in clothing. (2011). Song, G. (Ed.). Woodhead Publishing Ltd. (Cambridge, United Kingdom), ISBN 9781845695392.

[75] Jhanji, Y., Gupta, D., Kothari, V. K. (2015). Thermo-physiological properties of polyester–cotton plated fabrics in relation to fibre linear density and yarn type. Fashion and Textiles, 2(16), DOI:10.1186/s40691-015-0041-x.

[76] Psikuta, A., Frackiewicz-Kaczmarek, J., Mert, E., Bueno, M. A., Rossi, R. M. (2015). Validation of a novel 3D scanning method for determination of the air gap in clothing. Measurement 67, 61-70, DOI:10.1016/j. measurement.2015.02.024.

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

Journal Information

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1,016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 17
PDF Downloads 76 76 9