A New Approach to Evaluate Fabric Hand Based on Three-Dimensional Drape Model

Open access


Fabric quality and performance is assessed subjectively by the customer using an important and complex phenomenon of fabric hand. Objectively, it is evaluated with complicated and expensive instruments, such as Kawabata Evaluation System for Fabrics (KES-F) and Fabric Assurance with Simple Testing (FAST). The present research explores a non-touch objective approach, i.e., three-dimensional (3D) drape model to estimate fabric hand. Fabric hand prediction was testified on different commercial fabrics spanning a wide range of areal weight, thickness, yarn count, and fabric density. Fabric objective ranks based on drape indicators using principal component analysis (PCA) were compared with subjective ranks of fabric hand. Additionally, fabric drape is evaluated three dimensionally and a new drape indicator drape height (DH) is proposed. The cosine similarity results have proved fabric drape as an objective alternate to fabric hand.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Pan N. Yen K. C. (1992). Physical interpretations of curves obtained through the fabric extraction process for handle measurement. Textile Research Journal 62(5) 279-290.

  • [2] Pan N. (2006). Quantification and evaluation of human tactile sense towards fabrics. International Journal of Design & Nature and Ecodynamics 1(1) 48-60.

  • [3] Wang H. Mahar T. J. Hall R. (2012). Prediction of the handle characteristics of lightweight next-to-skin knitted fabrics using a fabric extraction technique. Journal of the Textile Institute 103(7) 691-697.

  • [4] Grover G. Sultan M. Spivak S. (1993). A screening technique for fabric handle. Journal of the Textile Institute 84(3) 486-494.

  • [5] Peirce F. (1930). The “handle” of cloth as a measurable quantity. Journal of the Textile Institute Transactions 21(9) T377-T416.

  • [6] Kawabata S. (1980). Examination of effect of basic mechanical properties of fabrics on fabric hand. In ‘Mechanics of flexible fiber assemblies’. NATO Advanced Study Institute Series. (Eds JWS Hearle JJ Thwaites J Amirbayat) 405-417.

  • [7] Kawabata S. (1980). The Standardization and analysis of hand evaluation. The Hand Evaluation and Standardization Committee The Textile Machinery Society of Japan.

  • [8] Morooka H. Niwa M. (1976). Relation between drape coefficients and mechanical properties of fabrics. Vol. 22 67-73.

  • [9] Lai S. S. Shyr T. W. Lin J. Y. (2002). Compariso between KES-FB and FAST in discrimination of fabric characteristics. Journal of Textile Engineering 48(2) 43-49.

  • [10] Ly N. G. Tester D. H. Buckenham P. Roczniok A. F. Brothers M. et al. (1988). Simple instruments for quality control in a tailoring company. IWTO: Paris

  • [11] Kim H. S. Na M. H. (2013). Effects of bending properties and drapability on the hand and appearance of wool-blended Fabrics: Comparison of real clothing with online and 3D virtual garments. Fibers and Polymers 14(12) 2148-2156.

  • [12] Xue Z. Zeng X. Koehl L. Chen L. (2014). Extracting fabric hand information from visual representations of flared skirts. Textile Research Journal 84(3) 246-266.

  • [13] Kim J. O. Slaten B. L. (1999). Objective evaluation of fabric hand: part I: relationships of fabric hand by the extraction method and related physical and surface properties. Textile Research Journal 69(1) 59-67.

  • [14] Elder H. Fisher S. Hutchison G. Beattie S. (1985). A psychological scale for fabric stiffness. Journal of the Textile Institute 76(6) 442-449.

  • [15] Tokmak O. Berkalp O. B. Gersak J. (2010). Investigation of the mechanics and performance of woven fabrics using objective evaluation techniques. Part I: the relationship between FAST KES-F and Cusick’s drape-meter parameters. Fibres & Textiles in Eastern Europe 18 2 (79) 55-59.

  • [16] Chu C. C. Platt M. M. Hamburger W. J. (1960). Investigation of the factors affecting the drapeability of fabrics. Textile Research Journal 30(1) 66-67.

  • [17] Cusick G. (1965). The dependence of fabric drape on bending and shear stiffness. Journal of the Textile Institute Transactions 56(11) T596-T606.

  • [18] Viera G. Zdenek K. (2014). Drape evaluation by the 3D drape scanner. Journal of Textile & Apparel/Tekstil ve Konfeksiyon 24(3) 279-285.

  • [19] ASTM D-04/D1776. (2004). Standard practice for conditioning and testing textiles. ASTM International.

  • [20] Suelar V. Okur A. (2007). Sensory evaluation methods for tactile properties of fabrics. Journal of Sensory Studies 22(1) 1-16.

  • [21] Wu G. Li D. Hu P. Zhong Y. Pan N. (2018). Automatic foot scanning and measurement based on multiple RGBdepth cameras. Textile Research Journal 88(2) 167-181.

  • [22] Stylios G. K. R. Zhu R. (1997). The characterisation of the static and dynamic drape of fabrics. The Journal of The Textile Institute 88(4) 465-475.

  • [23] Cusick G. E. (1968). The measurement of fabric drape. Journal of the Textile Institute 59(6) 253-260.

  • [24] Jeong Y. (1998). A study of fabric-drape behaviour with image analysis part I: measurement characterisation and instability. Journal of the Textile Institute 89(1) 59-69.

  • [25] Stylios G. Wan T. (1999). The concept of virtual measurement: 3D fabric drapeability. International Journal of Clothing Science and Technology 11(1) 10-18.

  • [26] Behera B. K Pattanayak A. K. (2008). Measurement and modelling of drape using digital image processing. Indian Journal of Fibre & Textile Research 33 230-238.

  • [27] Robson D. Long C.C. (2000). Long. Drape analysis using imaging techniques. Clothing and Textiles Research Journal 18(1) 1-8.

  • [28] Jevšnik S. Geršak J. (2004). Modelling the fused panel for a numerical simulation of drape. Fibres & Textiles in Eastern Europe 12(1) 47-52.

  • [29] Mizutani C. Amano T. Sakaguchi Y. (2005). A new apparatus for the study of fabric drape. Textile Research Journal 75(1) 81-87.

  • [30] Al-Gaadi B. Goktepe F. Halasz M. (2012). A new method in fabric drape measurement and analysis of the drape formation process. Textile Research Journal 82(5) 502-512.

  • [31] May-Plumlee T. Tester D. Jeffrey E. Narahari K. Pradeep P. (2003). Evaluating 3D drape simulations: methods and metrics. International Textile Design and Engineering Conference (INT-EDEC).

  • [32] Carrera-Gallissà E. Capdevila X. Valldeperas J. (2016). Evaluating drape shape in woven fabrics. The Journal of The Textile Institute 108(3) 325-336.

  • [33] Jevšnik S. Žunič-Lojen D. (2007). Drape behaviour of seamed fabrics. Fibers and polymers 8(5) 550-557.

  • [34] Wu G. Yu Z. Hussain A. Zhong Y. (2017). 3D Drape Reconstruction and Parameterization Based on Smartphone Video and Elliptical Fourier Analysis. Procedia Computer Science 108 1552-1561.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 15
PDF Downloads 86 86 5