Analysis on the Conformity between the Closed-Circuit Embroidery Elements of Different Widths and the Digitally Designed Elements

Open access

Abstract

The embroidery process is one of the means of joining textile mate-rials into a system, which is widely applied in the creation of products of special destinations. The development of the functionality of embroidery systems is indissoluble from high-quality requirements for the accuracy of the form of the element. In the embroidery process, the system of textile materials experiences various dynamic loads, multiple stretching, and crushing; therefore, the geometrical parameters of the embroidery element change. The objective of this paper was to analyze the widths of the different square-form closed-circuit embroidery elements and also to perform their analysis with the purpose to evaluate the embroidery accuracy of the embroidered elements. Test samples were prepared in the form of square-form closed-circuit embroidery elements of five different contour widths: 6 mm, 10 mm, 14 mm, 18 mm, and 22 mm. During the investigation, it has been determined that in most cases the contour widths of the five closed-circuit square-form embroidery elements were obtained, smaller than the size of the digitally designed element.

[1] Radavičienė, S., Jucienė, M., Juchnevičienė, Ž., Čepukonė, L., Vilumsone, A., et al. (2014). Analysis of shape nonconformity between embroidered element and its digital image. Materials science (Medžiagotyra), 20(1): 84-89. ISSN 1392-1320.

[2] Akerfeldt, M., Lund, A., Walkenström, P. (2015). Textile sensing glove with piezoe-lectric PVDF fibers and printed electrodes of PEDOT:PSS. Textile Research Journal, 85(17), 1789-1799.

[3] Chernenko, D. А. (2006). Systematization of design parameters for automated em-broidery and modelling of deformation system of “Fabric-Embroidery“ Ph. D. Thesis, Orel, Russia, 132 p.

[4] Tian, Q. M., Luo, Y. P., Hu, D. C. (2006). Spiral-fashion embroidery path generation in embroidery CAD systems. Computer-Aided Design, 38, 125-133.

[5] Radavičienė, S., Jucienė, M. (2012). Influence of embroidery threads on the accuracy of embroidery pattern dimensions. Fibres & Textiles in Eastern Europe, 20, 3(92), 92-97.

[6] Dobilaitė, V., Petrauskas, A. (2002). The method of seam pucker evaluation. Material Science (Medžiagotyra), 9(1), 209-212.

[7] Juchnevičienė, Ž., Jucienė, M., Radavičienė, S. (2017). The research on the width of the closed-circuit squareshaped embroidery element. Materials Science (Medžiagotyra), 23(2), 187-190.

[8] Bailie, B. D. (2008). Adjustable embroidery design system and method. US Patent 7,457,683, 2008 [Online]. Available from: https://www.google.com/patents/US7457683.

[9] Angelova, R. A., Sofronova, D., Nikolova, V. (2016). A case study on the defects in industrial manufacturing of embroidered textiles. Journal of Multidisciplinary Engineering Science and Technology, 3(12), 2458-9403.

[10] Radavičienė, S., Jucienė, M. (2010). Investigation of mechanical properties of embroidery threads. 5th International Textile, Clothing & Design Conference, Zagreb, 3-6 October, (pp. 494-499).

[11] Post, E. R., Orth, M., Russo, P. R., Gershenfeld, N. (2000). E-broidery: design and fabrication of textile-based computing. IBM Systems Journal, 39, 840-860.

[12] Shih, C. -Y., Jeffery Kuo, C. -F., Cheng, J. -H. (2016). A study of automated color, shape and texture analysis of Tatami embroidery fabrics. Textile Research Jour-nal, 86(17), 1791-1802.

[13] Daukantienė, V., Laurinavičiūtė, I. (2013). The synergism of design and tech-nology for the optimization of embroidery motifs in clothing. International Journal of Clothing Science and Technology, 25(5), 350-360.

[14] Zhang, S., Chauraya, A., Whittow, W., Seager, R., Acti, T., Dias, T., Vardax-oglou, Y. (2012). Embroidered wearable antennas using conductive threads with dif-ferent stitch spacings. Final author version. Loughborough Antennas & Propagation Conference, 12-13 November 2012, Loughborough, UK, (pp. 1-6).

[15] Klevaitytė, R., Masteikaitė, V. (2008). Anisotropy of woven fabric deformation after stretching. Fibers & Textiles in Eastern Europe, 16(3), 52-56.

[16] Milašius, V. (2000). An integrated structure factor for woven fabrics. Part I: es-timation of the weave. The Journal of the Textile Institute, Part 1, 91(2), 268-276. Part II: The fabric - firmness Factor. The Journal of the Textile Institute, Part 1, 91(91), 277-284.

[17] Radavičienė, S., Jucienė, M. (2013). Buckling of the woven fabric inside an embroidered element. Proceedings of the Estonian Academy of Sciences, 62(3), 187-192.

[18] Jeffery Kuo, C. -F., Juang, Y. (2016). A study on the recognition and classifi-cation of embroidered textile defects in manufacturing. Textile Research Journal, 86(4), 393-408.

[19] Shan, H. Y. J. S. C., Yong, C. J. (2003). An algorithm of finding path of em-broider suture needle. Chinese Journal of Computers, 9, 1-25.

[20] Gan, L., Ly, N. G. (1995). A study if fabric deformation using nonlinear finite element. Textile Research Journal, 65(11), 185-196.

[21] Domskienė, J., Strazdienė, E. (2002). Shearing behaviour of technical textiles. Material Science (Medžiagotyra), 8(4), 489-494.

[22] Domskienė, J., Strazdienė, E. (2005). Investigation of fabric shear behavior. Fi-bres and Textiles in Eastern Europe, 13(2), 26-30.

[23] Sacevičienė, V., Masteikaitė, V. (2003). Effects of coated fabrics structural characteristics on their tensile properties. Baltic Textile & Leather: International Con-ference, September 11-12, 2003, Kaunas-Vilnius, Lithuania: Proceedings. Kaunas: Technologija, ISBN 9955-09-479-6, (pp. 70-75).

[24] Urbelis, V., Petrauskas, A., Gulbinienė, A. (2008). Influence of hygrothermal treatment on the stress relaxation of clothing fabrics’ systems. Materials science (Medžiagotyra), 14(1), 69-74.

[25] Hosseinali, F. (2012). Investigation on the tensile properties of individual cot-ton. (Gossypium hirsutum L.) Fibers Texas Tech University, Farzad Hosseinali, Au-gust, 1-76.

[26] Pavlinič, D. Z., Geršak, J. (2003). Investigations of the relation between fabric mechanical properties and behaviour international. Journal of Clothing Science and Technology, 15(3/4), 231-240.

[27] Pocienė, R., Vitkauskas, A. (2007). Inverse stress relaxation in textile yarns af-ter the blockage of viscoelastic recovery. Materials science (Medžiagotyra), 13(3), 240-244. ISSN 1392-1320.

[28] Rudolf, A., Geršak, J. (2007). Influence of sewing speed on the changes of me-chanical properties of differently twisted and lubricated threads during the process of sewing. Tekstil, 56(5), 271-277.

[29] Rudolf, A., Geršak, J., Ujhelyiova, A., Smole, M. S. (2007). Study of PES sew-ing thread properties. Fibers and Polymers, 8(2), 212-217.

[30] Yamaha, K. (2009). “Embroidery data creation apparatus and storage medium storing embroider data creation program. Patent No. US2009299518. 24 p. [Online]. Available from: https www.google.com/patents/US20090299518.

[31] Sherien, N., Kateb, E. L. (2015). An investigation of factors affect ends-down rate in embroidery machine. The Journal of American Science, 11(6), 39-42. ISSN: 1545-1003.

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

Journal Information


IMPACT FACTOR 2017: 0.957
5-year IMPACT FACTOR: 1.027

CiteScore 2017: 1.18

SCImago Journal Rank (SJR) 2017: 0.448
Source Normalized Impact per Paper (SNIP) 2017: 1.465

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 17
PDF Downloads 29 29 5