Studies of Structural Changes in PAN Fibers with Various Initial Structures Under the Influence of Thermal Treatment in Media

Open access

Abstract

The aim of the paper is to assess the range and the mechanisms of transformations of the molecular structure and the physical microstructure of polyacrylonitrile (PAN) fibers produced by various manufacturers under the influence of thermal treatment in different conditions. The thermal treatments were carried out in different media (such as air, water, and steam), at various temperatures, and using different periods of treatment. Changes in the molecular structure were assessed using infrared (IR) absorption spectroscopy and evaluation of the differences in molecular cohesion energy of the fiber material during the dissolution processes. Changes in the fibers’ physical microstructure were investigated using densitometric, IR spectrophotometric, and X-ray diffraction methods; for assessment of both the reconstruction process of the paracrystalline matter of the fibers and the changes in the fibers’ total orientation, interferential polarization microscopy was used.

[1] English Patent 864096.

[2] German patent 975540.

[3] French patent 1267240.

[4] Bhemdrup, J., Faserforsch, u. (1961). Textiltechn, 12, 133, 208.

[5] Izumi, Z., Kiuchi, K., Watanabe, M. (1963). Copolymerization of acrylonitrile and p-sodium styrene sulfanate. Journal of Polymer Science Part A: General Papers, A-1, 2, 705.

[6] Boguń, M., Mikołajczyk, T. (2006). Fibres & Textiles in Eastern Europe, 3(57), 19-22.

[7] Mikołajczyk, T., Boguń, M., Kowalczyk, A. (2005) Fibres & Textiles in Eastern Europe, 3(51), 30-34.

[8] Brzezińska, M., Król, P., Boguń, M. (2012) Engineering of Biomaterials, 15, 116-117, 100-103.

[9] Mikołajczyk, T., Szparaga, G. (2009). Influence of fibre formation conditions on the properties of nanocomposite PAN fibres containing Nanosilver. Fibres and Textiles in Eastern Europe, 75(4), 30-36.

[10] Mikołajczyk, T., Szparaga, G., Janowska, G. (2009) Influence of silver nano-additive amount on the supramolecular structure, porosity, and properties of polyacrylonitrile precursor fibers. Polymers for Advanced Technologies, 20(12), 1035-1043.

[11] Houtz, R. C. (1950). “Orlon” acrylic fiber: chemistry and properties. Textile Research Journal, 20, 786.

[12] Grassie, N., Hay, N. J., Mc Neill J. (1958). Coloration in acrylonitrile and methacrylonitrile polymers. Journal of Polymer Science, 31, 205.

[13] Schurz, J. J. (1958). Discoloration effects in acrylonitrile polymers. Journal of Polymer Science, 28, 438.

[14] Conley, R. T., Bieron, J. (1963). Examination of the oxidative degradation of polyacrylonitrile using infrared spectroscopy. Journal of Applied Polymer Science, 7, 1757.

[15] Fester, W. (1965). Textil – Rundsch., 20, 1.

[16] Koszeliew, I. W., Sokołowskij, W. H. (1993). Fibre Chemistry, 5, 8.

[17] Fimcer, E., Fros, W. (1992). Fibre Chemistry, 2, 14.

[18] Sawczenko, G., Bondarenko, W. M., Azarowa, M. T. (1994). Fibre Chemistry, 6, 21.

[19] Azarowa, M. T., Bondarenko, W. M., Sawczenko, G. (1995). Fibre Chemistry, 1, 10.

[20] Kakida, H., Tashiro, K. (1998). Mechanism and kinetics of stabilization reactions of polyacrylonitrile and related copolymers IV. Effects of atmosphere on isothermal DSC thermograms and FT-IR spectral changes during stabilization reaction of acrylonitrile/methacrylic acid copolymer. Polymer Journal, 30, 463-469.

[21] Kalasznik, A. T., Zlatoustowa, L. A., et al. (1999). Fibre Chemistry, 31, 425.

[22] Warszawskij, W. J. (1994). Fibre Chemistry, 1, 18.

[23] Wołkowicz, K. (1987). Przegląd włókienniczy, 14.

[24] Szparaga, G., Mikołajczyk, T., Fraczek-Szczypta, A. (2013). Fibres & Textiles in Eastern Europe, 6(102), 33-38.

[25] Boguń, M. (2008). Zeszyty naukowe, Włókiennictwo, Politechnika Łódzka, 64, 19-39.

[26] Glicińska, E., Babeł, K. (2013). Fibres & Textiles in Eastern Europe, 3(99), 42-47.

[27] Szparaga, G. (2012). Zeszyty naukowe, Włókiennictwo, Politechnika Łódzka, 69, 41-58.

[28] Marczak, E., Marczak, P. (2009). Przegląd Włókienniczy-Włókno, Odzież, Skóra, 1, 32-36.

[29] Marczak, P., Marczak, E. (2009). Przegląd Włókienniczy-Włókno, Odzież, Skóra, 4, 37-40.

[30] Marczak E, Marczak P. (2003). Przegląd Włókienniczy+Technik Włókienniczy, 3, 3-5.

[31] Mikołajczyk, T. (1997). Zeszyty naukowe PŁ nr 781, Rozprawy Naukowe Z 243.

[32] AKSA (Aksa Akrilik Kimya Sanayii A.i). AKSA The world leader in acrylic fiber. Chopped carbon fiber. Retrieved October 26, 2011. Website: http://www.semplastik.com.tr/pdf/VIPAGEV/Chopped%20Carbon%20Fiber.pdf.

[33] Lipp-Symonowicz, B., Sztajnowski, S., Kułak, A. (2012). Infrared radiation. IR spectroscopy as a possible method of analysing fibre structures and their changes under various impacts. Website: www.intechopen.com, http://cdn.intechopen.com/pdfs-wm/27933.pdf.

[34] Bieniek, A., Lipp-Symonowicz, B., Sztajnowski, S. (2009). Influence of the structures of polyamide 6 fibers on their ageing under intensive insolation conditions [in English]. Polimery, 11-12, 840.

[35] Bell, R. J. (1972). Introductory Fourier transform infrared spectroscopy. New York, Academic Press.

[36] Hirschfeld, T. (1979). Fourier transform infrared spectroscopy. Ferraro – Basile, eds. Applications to Chemical Systems. Vol. 2. New York, Academic Press.

[37] Dechant, J. (1972). Ultrarotspektroskopische Untersuchungen an Polymeren, Berlin, Akademie-Verlag.

[38] Witenhafer, D. E., Koenig, J. L. (1968). Infrared studies of poly[3,3-bis(chloromethyl)oxacyclobutane]. II. Polymorphic transformation. J Macromolecular Science Part B, 2, 247.

[39] Ueberreiter, K. (1968). Diffusion in polymers. New York, NY: Academic Press.

[40] Lindenmeyer, P. H., Hosemann, R. J. (1963). Permanent polarization in poly(acrylonitrile). Journal of Applied Physics, 34, 42.

[41] Urbańczyk, G. W. (1970). Fizyka Włókna, WNT, Warszawa.

[42] Pluta, M. (1982). Mikroskopia optyczna, PWN, Warszawa.

[43] Dorau, K., Pluta M. (1981). Przegląd Włókienniczy, 2, 70.

[44] Urbańczyk, G. W. (2002). Fizyka Włókna, PŁ, Łódź.

[45] Hindeleh, A. M., Johnson, D. J. (1971). The resolution of multipeak data in fibre science. Journal of Physics D: Applied Physics, 4, 259.

[46] Hindeleh, A. M., Johnson, D. J. (1978). Crystallinity and crystallite size measurement in polyamide and polyester fibres. Polymer, 19, 27-35.

[47] Sztajnowski, S., Puchalski, M., Krucińska, I., Sulak, K. (2012). Fibres & textiles in Eastern Europe, 20, 6B (96), 89.

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

Journal Information


IMPACT FACTOR 2017: 0.957
5-year IMPACT FACTOR: 1.027

CiteScore 2017: 1.18

SCImago Journal Rank (SJR) 2017: 0.448
Source Normalized Impact per Paper (SNIP) 2017: 1.465

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 10
PDF Downloads 21 21 6