The Analysis of Structure and Physicochemical Properties of Yarns Used for Manufacturing Hernia Meshes

Open access

Abstract

The article presents a comparative analysis of the yarns used for manufacturing hernia meshes. For the analysis, two different linear masses, 46 dtex and 72 dtex, of transparent and dyed yarns were used; the dye used in the yarns was adequate for their intended use. The DSC tests showed the influence of thermal treatment on the change of thermal properties of the yarns. At the same time, it was proved that the aforementioned treatment had a bearing on the changes of crystallinity degree. All types of yarns were also subjected to physicochemical tests required for all the materials used for the production of hernia meshes.

Abstract

The article presents a comparative analysis of the yarns used for manufacturing hernia meshes. For the analysis, two different linear masses, 46 dtex and 72 dtex, of transparent and dyed yarns were used; the dye used in the yarns was adequate for their intended use. The DSC tests showed the influence of thermal treatment on the change of thermal properties of the yarns. At the same time, it was proved that the aforementioned treatment had a bearing on the changes of crystallinity degree. All types of yarns were also subjected to physicochemical tests required for all the materials used for the production of hernia meshes.

References

  • [1] Stephenson B.M. Complications of open groin hernia repairs. Surgical Clinics of North America 2003; 83: 1255 - 78

  • [2] Gohel J., Naik N., Parmar H., Solanki B. A comparative study of inguinal hernia repair by Shouldice method vs other methods. International Archives of Integrated Medicine 2016; 3:13-17

  • [3] Wolf M.T., Dearth Ch.L., Ranallo Ch.A., LoPresti S.T., Carey L.E., Daly B.N., Badylak S.F. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials 2014; 35: 6838 - 6849

  • [4] Olędzka E., Sobczak M., Kołodziejski W.L. Polimery w medycynie - przegląd dotychczasowych osiągnięć. Polimery 2007;52: 795-803

  • [5] Hollinsky C., Sandberg S., Koch T., Seidler S. Biomechanical properties of light-weight versus heavyweight meshes for laparoscopic inguinal hernia repair and their impact on recurrence rates. Surgical Endoscopy 2008; 22: 2679-85

  • [6] Feola A., Barone W., Moalli P., Abramowitch S. Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products. International Urogynecology Journal 2013; 24: 559-64

  • [7] Klosterhalfen B., Junge K., Klinge U. The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices 2005;2: 103-17

  • [8] Usher F.C., Ochsner J., Tuttle L.L. Use of Marlex mesh in the repair of incisional hernias. The American Journal of Surgery 1958, 24, 969-974

  • [9] Bisel Y., Abci I. The search for idea hernia repair; mesh materials and types. International Journal of Surgery 2012;10: 317-321

  • [10] Procter L., Falco E.E., Fisher J.P., Roth J.S. Abdominal Wall Hernias and Biomaterials Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg, 2009

  • [11] Cozad M.J., Grant D.A., Bachman S.L., Grant D.N., Ramshaw B.J., Grant S.A. Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010; 94: 455-62

  • [12] Cobb W.S., Kercher K.W., Heniford B.T. The Argument for Lightweight Polypropylene Mesh in Hernia Repair. Surgical Innovation 2005;12: 1-3

  • [13] Baylon K., Rodriguez-Camarillo P., Elias-Zuniga A., Diaz- Elizondo J.A., Gilkerson R., Lozano K. Past, Present and Future of Surgical Meshes: A Review. Membranes 2017;7:1-23

  • [14] Zhu L-M., Schuster P., Klinge U. Mesh implants: An overview of crucial mesh parameters. World Journal of Gastrointestinal Surgery 2015;7:226-236

  • [15] Fernandez-Gutierrez M., Olivares E., Pascual G., Bellon J.M., Roman J.S. Low-density polypropylene meshes coated with resorbable and biocompatible hydrophilic polymers as controlled release agents of antibiotics. Acta Biomaterialia 2013; 9:6006-6018

  • [16] Darzi S., Urbankova I., Su K., White J., Lo C., Alexander D., Werkmeister J.A., Gargett C.E., Deprest J. Tissue response to collagen containing polypropylene meshes in an ovine vaginal repair model. Acta Biomaterialia 2016, 39, 114-123

  • [17] Hernandez-Gascon B., Pena E., Melero H., Pascual G., Doblare M., Ginebra M.P., Bellon J.M., Calvo B. Mechanical behaviour of synthetic surgical meshes: Finite element simulation of the herniated abdominal wall. Acta Biomaterialia 2011;7:3905-3913

  • [18] Klinge U., Klosterhalfen B., Ottinger A.P., Junge K., Schumpelick V. PVDDF as a new polymer for the construction of surgical meshes. Biomaterials 2002;23:3487-3493

  • [19] Imel A., Malmgren T., Dadmun M., Gido S., Mays J. In vivo oxidative degradation of polypropylene pelvic mesh. Biomaterials 2015;73:131-141

[1] Stephenson B.M. Complications of open groin hernia repairs. Surgical Clinics of North America 2003; 83: 1255 - 78

[2] Gohel J., Naik N., Parmar H., Solanki B. A comparative study of inguinal hernia repair by Shouldice method vs other methods. International Archives of Integrated Medicine 2016; 3:13-17

[3] Wolf M.T., Dearth Ch.L., Ranallo Ch.A., LoPresti S.T., Carey L.E., Daly B.N., Badylak S.F. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials 2014; 35: 6838 - 6849

[4] Olędzka E., Sobczak M., Kołodziejski W.L. Polimery w medycynie - przegląd dotychczasowych osiągnięć. Polimery 2007;52: 795-803

[5] Hollinsky C., Sandberg S., Koch T., Seidler S. Biomechanical properties of light-weight versus heavyweight meshes for laparoscopic inguinal hernia repair and their impact on recurrence rates. Surgical Endoscopy 2008; 22: 2679-85

[6] Feola A., Barone W., Moalli P., Abramowitch S. Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products. International Urogynecology Journal 2013; 24: 559-64

[7] Klosterhalfen B., Junge K., Klinge U. The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices 2005;2: 103-17

[8] Usher F.C., Ochsner J., Tuttle L.L. Use of Marlex mesh in the repair of incisional hernias. The American Journal of Surgery 1958, 24, 969-974

[9] Bisel Y., Abci I. The search for idea hernia repair; mesh materials and types. International Journal of Surgery 2012;10: 317-321

[10] Procter L., Falco E.E., Fisher J.P., Roth J.S. Abdominal Wall Hernias and Biomaterials Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg, 2009

[11] Cozad M.J., Grant D.A., Bachman S.L., Grant D.N., Ramshaw B.J., Grant S.A. Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010; 94: 455-62

[12] Cobb W.S., Kercher K.W., Heniford B.T. The Argument for Lightweight Polypropylene Mesh in Hernia Repair. Surgical Innovation 2005;12: 1-3

[13] Baylon K., Rodriguez-Camarillo P., Elias-Zuniga A., Diaz- Elizondo J.A., Gilkerson R., Lozano K. Past, Present and Future of Surgical Meshes: A Review. Membranes 2017;7:1-23

[14] Zhu L-M., Schuster P., Klinge U. Mesh implants: An overview of crucial mesh parameters. World Journal of Gastrointestinal Surgery 2015;7:226-236

[15] Fernandez-Gutierrez M., Olivares E., Pascual G., Bellon J.M., Roman J.S. Low-density polypropylene meshes coated with resorbable and biocompatible hydrophilic polymers as controlled release agents of antibiotics. Acta Biomaterialia 2013; 9:6006-6018

[16] Darzi S., Urbankova I., Su K., White J., Lo C., Alexander D., Werkmeister J.A., Gargett C.E., Deprest J. Tissue response to collagen containing polypropylene meshes in an ovine vaginal repair model. Acta Biomaterialia 2016, 39, 114-123

[17] Hernandez-Gascon B., Pena E., Melero H., Pascual G., Doblare M., Ginebra M.P., Bellon J.M., Calvo B. Mechanical behaviour of synthetic surgical meshes: Finite element simulation of the herniated abdominal wall. Acta Biomaterialia 2011;7:3905-3913

[18] Klinge U., Klosterhalfen B., Ottinger A.P., Junge K., Schumpelick V. PVDDF as a new polymer for the construction of surgical meshes. Biomaterials 2002;23:3487-3493

[19] Imel A., Malmgren T., Dadmun M., Gido S., Mays J. In vivo oxidative degradation of polypropylene pelvic mesh. Biomaterials 2015;73:131-141

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

Journal Information


IMPACT FACTOR 2017: 0.957
5-year IMPACT FACTOR: 1.027

CiteScore 2017: 1.18

SCImago Journal Rank (SJR) 2017: 0.448
Source Normalized Impact per Paper (SNIP) 2017: 1.465

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 108 25
PDF Downloads 28 28 2